Bài 3 trang 106 SGK Toán 11 tập 1 - Chân trời sáng tạo — Không quảng cáo

Toán 11, giải toán lớp 11 chân trời sáng tạo Bài 2. Hai đường thẳng song song Toán 11 Chân trời sáng


Bài 3 trang 106 SGK Toán 11 tập 1 - Chân trời sáng tạo

Cho hình chóp (S.ABCD) có đáy (ABCD) là hình bình hành.

Đề bài

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành.

a) Tìm giao tuyến của hai mặt phẳng \(\left( {SCD} \right)\) và \(\left( {SAB} \right)\).

b) Lấy một điểm \(M\) trên đoạn \(SA\) (\(M\) khác \(S\) và \(A\)), mặt phẳng \(\left( {BCM} \right)\) cắt \(SD\) tại \(N\). Tứ giác \(CBMN\) là hình gì?

Phương pháp giải - Xem chi tiết

‒ Để tìm giao tuyến của hai mặt phẳng, ta có 2 cách:

+ Cách 1: Tìm 2 điểm chung phân biệt. Giao tuyến là đường thẳng đi qua hai điểm chung.

+ Cách 2: Tìm 1 điểm chung và 2 đường thẳng song song nằm trên mỗi mặt phẳng. Giao tuyến là đường thẳng đi qua điểm chung và song song với hai đường thẳng đó.

Lời giải chi tiết

a) Ta có:

\(\left. \begin{array}{l}S \in \left( {SC{\rm{D}}} \right) \cap \left( {SAB} \right)\\C{\rm{D}}\parallel AB\\C{\rm{D}} \subset \left( {SC{\rm{D}}} \right)\\AB \subset \left( {SAB} \right)\end{array} \right\}\)

\( \Rightarrow \)Giao tuyến của hai mặt phẳng \(\left( {SCD} \right)\) và \(\left( {SAB} \right)\) là đường thẳng \(d\) đi qua \(S\), song song với \(C{\rm{D}}\) và \(AB\).

b) Ta có:

\(\begin{array}{l}BC = \left( {BCM} \right) \cap \left( {ABC{\rm{D}}} \right)\\A{\rm{D}} = \left( {SA{\rm{D}}} \right) \cap \left( {ABC{\rm{D}}} \right)\\MN = \left( {BCM} \right) \cap \left( {SA{\rm{D}}} \right)\\BC\parallel A{\rm{D}}\end{array}\)

Do đó theo định lí 2 về giao tuyến của ba mặt phẳng ta có: \(A{\rm{D}}\parallel BC\parallel MN\).

Vậy tứ giác \(CBMN\) là hình thang.


Cùng chủ đề:

Bài 3 trang 86 SGK Toán 11 tập 2 – Chân trời sáng tạo
Bài 3 trang 93 SGK Toán 11 tập 2 – Chân trời sáng tạo
Bài 3 trang 97 SGK Toán 11 tập 2 – Chân trời sáng tạo
Bài 3 trang 98 SGK Toán 11 tập 2 – Chân trời sáng tạo
Bài 3 trang 99 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 3 trang 106 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 3 trang 112 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 3 trang 120 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 3 trang 126 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 3 trang 127 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 3 trang 135 SGK Toán 11 tập 1 - Chân trời sáng tạo