Bài 31 trang 79 SGK Toán 9 tập 2 — Không quảng cáo

Giải toán 9, giải bài tập toán lớp 9 đầy đủ đại số và hình học Bài 4. Góc tạo bởi tia tiếp tuyến và dây cung


Bài 31 trang 79 SGK Toán 9 tập 2

Cho đường tròn (O; R)

Đề bài

Cho đường tròn \((O; R)\) và dây cung \(BC = R\). Hai tiếp tuyến của đường tròn \((O)\) tại \(B, C\) cắt nhau tại \(A\). Tính \(\widehat {ABC},\widehat {BAC}\).

Phương pháp giải - Xem chi tiết

+) Trong một đường tròn, góc nội tiếp và góc tạo bởi tia tiếp tuyến và dây cung cùng chắn một cung thì có số đo bằng nhau và bằng nửa số đo cung bị chắn.

+) Tổng bốn góc  của tứ giác lồi bằng \(360^0\).

Lời giải chi tiết

Cách 1: Tam giác BOC có \(BC = OB = OC = R\)

\(\Rightarrow\) Tam giác \(BOC\) là tam giác đều (Tam giác có 3 cạnh bằng nhau)

Xét \((O)\) ta có: \(\widehat {ABC}\) là góc tạo bởi tia tiếp tuyến \(BA\) và dây cung \(BC\) của \((O)\) .

Ta có: sđ \(\overparen{BC}=\widehat {BOC}=60^0\) (góc ở tâm chắn \(\overparen{BC}\) ) và \(\widehat {ABC}= \dfrac {1}{2} sđ\overparen{BC}=30^0\) (góc tạo bởi tia tiếp tuyến và dây cung chắn \(\overparen{BC}\)).

Vì \(AB,AC\) là các tiếp tuyến của đường tròn \((O)\) nên \(\widehat {ABO}=\widehat {ACO}=90^0\)

Xét tứ giác \(OBAC\) có \(\widehat {ABO}+\widehat {ACO}+\widehat {BOC}+\widehat {BAC}=360^0\)

\(\Rightarrow\) \(\widehat {BAC} = {360^0} - \widehat {ABO}-\widehat {ACO}-\widehat {BOC} \)

\(=360^0- {90^0}-90^0 - {60^0} = {120^0}\).

Cách 2:

Tam giác BOC có \(BC = OB = OC = R\)

Suy ra tam giác \(BOC\) là tam giác đều (Tam giác có 3 cạnh bằng nhau) nên \(\widehat {BOC}=60^0\)

\(\overparen{BC}=\widehat {BOC}=60^0\) (góc ở tâm chắn \(\overparen{BC}\) ) và \(\widehat {ABC}= \dfrac {1}{2} sđ\overparen{BC}=30^0\) (góc tạo bởi tia tiếp tuyến và dây cung chắn \(\overparen{BC}\)).

Vì AB, AC là 2 tiếp tuyến của (O), cắt nhau tại A nên AB = AC (Tính chất 2 tiếp tuyến cắt nhau)

\(\Rightarrow\) Tam giác ABC cân tại A

\(\Rightarrow\) \(\widehat {ABC}=\widehat {ACB}\)

Xét tam giác ABC có:

\(\widehat {ABC}+\widehat {ACB}+ \widehat {BAC}=180^0\)

\(\Rightarrow \widehat {BAC}= 180^0 - (\widehat {ABC}+\widehat {ACB}) = 180^0-2.\widehat {ABC}=180^0-2. 30^0 = 120^0\)


Cùng chủ đề:

Bài 30 trang 124 SGK Toán 9 tập 2
Bài 31 trang 19 SGK Toán 9 tập 1
Bài 31 trang 23 SGK Toán 9 tập 2
Bài 31 trang 54 SGK Toán 9 tập 2
Bài 31 trang 59 SGK Toán 9 tập 1
Bài 31 trang 79 SGK Toán 9 tập 2
Bài 31 trang 89 SGK Toán 9 tập 1
Bài 31 trang 116 SGK Toán 9 tập 1
Bài 31 trang 124 SGK Toán 9 tập 2
Bài 32 trang 19 SGK Toán 9 tập 1
Bài 32 trang 23 SGK Toán 9 tập 2