Bài 6 trang 127 SGK Toán 11 tập 1 - Chân trời sáng tạo — Không quảng cáo

Toán 11, giải toán lớp 11 chân trời sáng tạo Bài tập cuối chương 4 Toán 11 Chân trời sáng tạo


Bài 6 trang 127 SGK Toán 11 tập 1 - Chân trời sáng tạo

Cho hình chóp tứ giác đều \(S.ABCD\) có cạnh đáy bằng 10. \(M\) là điểm trên \(SA\) sao cho \(\frac{{SM}}{{SA}} = \frac{2}{3}\). Một mặt phẳng \(\left( \alpha \right)\) đi qua \(M\) song song với \(AB\) và \(C{\rm{D}}\), cắt hình chóp theo một tứ giác có diện tích là

Đề bài

Cho hình chóp tứ giác đều \(S.ABCD\) có cạnh đáy bằng 10. \(M\) là điểm trên \(SA\) sao cho \(\frac{{SM}}{{SA}} = \frac{2}{3}\). Một mặt phẳng \(\left( \alpha  \right)\) đi qua \(M\) song song với \(AB\) và \(C{\rm{D}}\), cắt hình chóp theo một tứ giác có diện tích là

A. \(\frac{{400}}{9}\).

B. \(\frac{{200}}{3}\).

C. \(\frac{{40}}{9}\).

D. \(\frac{{200}}{9}\).

Phương pháp giải - Xem chi tiết

Sử dụng tỉ số diện tích.

Lời giải chi tiết

Qua \(M\) dựng đường thẳng song song với \(AB\), cắt \(SB\) tại \(N\).

Qua \(N\) dựng đường thẳng song song với \(BC\), cắt \(SC\) tại \(P\).

Qua \(M\) dựng đường thẳng song song với \(AD\), cắt \(SD\) tại \(Q\).

Ta có:

\(\left. \begin{array}{l}MN\parallel AB\\AB \subset \left( {ABCD} \right)\end{array} \right\} \Rightarrow MN\parallel \left( {ABCD} \right)\)

\(\left. \begin{array}{l}MQ\parallel AD\\AD \subset \left( {ABCD} \right)\end{array} \right\} \Rightarrow MQ\parallel \left( {ABCD} \right)\)

\(\left. \begin{array}{l}MN\parallel \left( {ABCD} \right)\\MQ\parallel \left( {ABCD} \right)\\MN,MQ \subset \left( \alpha  \right)\end{array} \right\} \Rightarrow \left( {MNPQ} \right)\parallel \left( {ABCD} \right)\)

\( \Rightarrow \frac{{{S_{MNPQ}}}}{{{S_{ABC{\rm{D}}}}}} = {\left( {\frac{{MN}}{{AB}}} \right)^2}\)

Ta có: \({S_{ABC{\rm{D}}}} = A{B^2} = {10^2} = 100\)

\(MN\parallel AB \Rightarrow \frac{{MN}}{{AB}} = \frac{{SM}}{{SA}} = \frac{2}{3}\)

\( \Rightarrow \frac{{{S_{MNPQ}}}}{{{S_{ABC{\rm{D}}}}}} = {\left( {\frac{2}{3}} \right)^2} = \frac{4}{9} \Rightarrow {S_{MNPQ}} = \frac{4}{9}{S_{ABC{\rm{D}}}} = \frac{4}{9}.100 = \frac{{400}}{9}\)

Chọn A.


Cùng chủ đề:

Bài 6 trang 86 SGK Toán 11 tập 2 – Chân trời sáng tạo
Bài 6 trang 98 SGK Toán 11 tập 2 – Chân trời sáng tạo
Bài 6 trang 106 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 6 trang 112 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 6 trang 120 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 6 trang 127 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 6 trang 143 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 7 trang 13 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 7 trang 13 SGK Toán 11 tập 2 - Chân trời sáng tạo
Bài 7 trang 19 SGK Toán 11 tập 2 - Chân trời sáng tạo
Bài 7 trang 20 SGK Toán 11 tập 1 - Chân trời ság tạo