Bài 7.5 trang 36 SGK Toán 11 tập 2 – Kết nối tri thức
Cho hình chóp S.ABC có đáy là tam giác cân tại A và SA ( bot ) (ABC). Gọi M là trung điểm của BC. Chứng minh rằng:
Đề bài
Cho hình chóp S.ABC có đáy là tam giác cân tại A và SA ⊥ (ABC). Gọi M là trung điểm của BC. Chứng minh rằng:
a) BC ⊥ (SAM);
b) Tam giác SBC cân tại S.
Phương pháp giải - Xem chi tiết
Nếu một đường thẳng vuông góc với hai đường thẳng cắt nhau thuộc cùng một mặt phẳng thì nó vuông góc với mặt phẳng đó.
Lời giải chi tiết
a) Xét tam giác ABC cân tại A có
AM là đường trung tuyến (M là trung điểm BC)
⇒ AM là đường cao ⇒ AM⊥BC
Ta có:
AM⊥BCSA⊥BC(SA⊥(ABC))AM∩SA={A}}⇒BC⊥(SAM)
b) BC⊥(SAM)SM⊂(SAM)}⇒BC⊥SM
Xét tam giác SBC có:
+) SM là đường cao (BC⊥SM)
+) SM là đường trung tuyến (M là trung điểm BC)
⇒ Tam giác SBC cân tại S.