Bài 9. 2 trang 96 SGK Toán 11 tập 2 - Cùng khám phá — Không quảng cáo

Toán 11, giải toán 11 cùng khám phá Bài 1. Công thức cộng xác suất Toán 11 Cùng khám phá


Bài 9.2 trang 96 SGK Toán 11 tập 2 - Cùng khám phá

Một trường trung học phổ thông có 300 học sinh khối 10; 275 học sinh khối 11 và 250 học sinh khối 12.

Đề bài

Một trường trung học phổ thông có 300 học sinh khối 10; 275 học sinh khối 11 và 250 học sinh khối 12. Nhà trường chọn một học sinh bất kì. Tính xác suất để học sinh đó không phải là học sinh khối 10.

Phương pháp giải - Xem chi tiết

Công thức xác suất: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}}\).

Lời giải chi tiết

\(n\left( \Omega  \right) = 300 + 275 + 250 = 825\)

Gọi A là biến cố” Học sinh đó không phải học sinh khối 10”

\(n\left( A \right) = 275 + 250 = 525\)

\(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \frac{{525}}{{825}} = \frac{7}{{11}}\)


Cùng chủ đề:

Bài 8. 48 trang 90 SGK Toán 11 tập 2 - Cùng khám phá
Bài 8. 49 trang 90 SGK Toán 11 tập 2 - Cùng khám phá
Bài 8. 50 trang 90 SGK Toán 11 tập 2 - Cùng khám phá
Bài 8. 51 trang 90 SGK Toán 11 tập 2 - Cùng khám phá
Bài 9. 1 trang 96 SGK Toán 11 tập 2 - Cùng khám phá
Bài 9. 2 trang 96 SGK Toán 11 tập 2 - Cùng khám phá
Bài 9. 3 trang 96 SGK Toán 11 tập 2 - Cùng khám phá
Bài 9. 4 trang 96 SGK Toán 11 tập 2 - Cùng khám phá
Bài 9. 5 trang 96 SGK Toán 11 tập 2 - Cùng khám phá
Bài 9. 6 trang 101 SGK Toán 11 tập 2 - Cùng khám phá
Bài 9. 7 trang 101 SGK Toán 11 tập 2 - Cùng khám phá