Bài tập 5 trang 156 Tài liệu dạy – học Toán 7 tập 1
Giải bài tập Cho tam giác ABC nhọn (AC <AC), gọi E là trung điểm của AC. Trên tia đối của tia EB ta lấy điểm M sao cho E là trung điểm của MB.
Đề bài
Cho tam giác ABC nhọn (AC <AC), gọi E là trung điểm của AC. Trên tia đối của tia EB ta lấy điểm M sao cho E là trung điểm của MB.
a) Chứng minh rằng ΔEBC=ΔEMA
b) Chứng minh rằng MA // BC.
c) Gọi F là trung điểm của Ab, trên tia đối của tia FC ta lấy điểm N sao cho F là trung điểm của NC. Chứng minh rằng ba điểm M, A, N thẳng hàng.
Lời giải chi tiết
a)Xét tam giác EBC và EMA có:
EC = EA (E là trung điểm AC)
EB = EM (E là trung điểm BM)
^BEC=^AEM (hai góc đối đỉnh)
Do đó: ΔEBC=ΔEMA(c.g.c)
b)Ta có: ΔEBC=ΔEMA (chứng minh câu a) ⇒^ECB=^EAM
Mà hai góc ECB và EAM ở vị trí so le trong nên MA // BC.
c) Xét tam giác AFN và BFC có:
AF = BF (F là trung điểm của AB)
^AFN=^BFC (hai góc đối đỉnh)
FN = FC (F là trung điểm của NC)
Do đó: ΔAFN=ΔBFC(c.g.c)⇒^AFN=^BCF
Mà hai góc này ở vị trí so le trong nên AN // BC.
Ta có: MA // BC (chứng minh câu b) và AN // BC (chứng minh trên)
Do đó: MA, AN trùng nhau (theo tiên đề Euclide). Vậy M, A, N thẳng hàng.