Câu 35 trang 118 SGK Hình học 11 Nâng cao — Không quảng cáo

Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học Bài 5: Khoảng cách


Câu 35 trang 118 SGK Hình học 11 Nâng cao

Cho tứ diện ABCD. Chứng minh rằng nếu AC = BD, AD = BC thì đường vuông góc chung của AB và CD là đường thẳng nối trung điểm của AB và CD. Điều ngược lại có đúng không ?

Đề bài

Cho tứ diện ABCD. Chứng minh rằng nếu AC = BD, AD = BC thì đường vuông góc chung của AB và CD là đường thẳng nối trung điểm của AB và CD. Điều ngược lại có đúng không ?

Lời giải chi tiết

a. Vì AC = BD, AD = BC nên tam giác ACD bằng tam giác BDC, từ đó hai trung tuyến tương ứng AJ và BJ bằng nhau (ở đó J là trung điểm của CD). Gọi I là trung điểm của AB thì ta có JI ⊥ AB.

Tương tự như trên ta cũng có JI ⊥ CD. Vậy JI là đường vuông góc chung của AB và CD.

b. Điều ngược lại của kết luận nêu ra trong bài toán cũng đúng, tức là nếu IJ ⊥ AB, IJ ⊥ CD, I, J lần lượt là trung điểm của AB và CD thì AC = BD; AD = BC.

Thật vậy, vì IJ ⊥ AB, I là trung điểm của AB nên AJ = BJ. Mặt khác :

\(\eqalign{  & A{C^2} + A{D^2} = 2A{J^2} + {{C{D^2}} \over 2}  \cr  & B{C^2} + B{D^2} = 2B{J^2} + {{C{D^2}} \over 2} \cr} \)

Từ đó ta có : \(A{C^2} + A{D^2} = B{C^2} + B{D^2}\)   (1)

Tương tự như trên ta cũng có :

\(C{B^2} + C{A^2} = D{B^2} + D{A^2}\,\,\,\,\left( 2 \right)\)

Từ (1) và (2) ta suy ra \(A{D^2} - B{C^2} = B{C^2} - D{A^2},\) tức là DA = BC và từ (1) ta cũng có AC = BD.


Cùng chủ đề:

Câu 34 trang 163 SGK Đại số và Giải tích 11 Nâng cao
Câu 34 trang 212 SGK Đại số và Giải tích 11 Nâng cao
Câu 35 trang 42 SGK Đại số và Giải tích 11 Nâng cao
Câu 35 trang 68 SGK Hình học 11 Nâng cao
Câu 35 trang 83 SGK Đại số và Giải tích 11 Nâng cao
Câu 35 trang 118 SGK Hình học 11 Nâng cao
Câu 35 trang 121 SGK Đại số và Giải tích 11 Nâng cao
Câu 35 trang 163 SGK Đại số và Giải tích 11 Nâng cao
Câu 35 trang 212 SGK Đại số và Giải tích 11 Nâng cao
Câu 36 trang 42 SGK Đại số và Giải tích 11 Nâng cao
Câu 36 trang 68 SGK Hình học 11 Nâng cao