Câu 35 trang 212 SGK Đại số và Giải tích 11 Nâng cao — Không quảng cáo

Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học Bài 3. Đạo hàm của các hàm số lượng giác


Câu 35 trang 212 SGK Đại số và Giải tích 11 Nâng cao

Giải phương trình y’ = 0 trong mỗi trường hợp sau :

Giải phương trình y’ = 0 trong mỗi trường hợp sau :

LG a

y = sin2x - 2cosx

Lời giải chi tiết:

Với mọi \(x \in\mathbb R\), ta có:

\(y' = 2\cos 2x + 2\sin x\) \( = 2\left( {1 - 2{{\sin }^2}x} \right) + 2\sin x\)

\(=-4{{\sin }^2}x+2\sin x+2\)

Vậy \(y' = 0 \Leftrightarrow 2{\sin ^2}x - \sin x - 1 = 0\)

\( \Leftrightarrow \left[ {\matrix{   {\sin x = 1}  \cr   {\sin x = -{1 \over 2}}  \cr  } } \right. \) \(\Leftrightarrow \left[ {\matrix{   {x = {\pi  \over 2} + k2\pi }  \cr   {x =  - {\pi  \over 6} + k2\pi }  \cr   {x = {{7\pi } \over 6} + k2\pi }  \cr  }\left( {k \in \mathbb Z} \right) } \right.\)

LG b

y = 3sin2x + 4cos2x + 10x

Lời giải chi tiết:

Với mọi \(x \in\mathbb R\), ta có: \(y' = 6\cos 2x - 8\sin 2x + 10\)

Vậy \(y' = 0\) \( \Leftrightarrow 6\cos 2x - 8\sin 2x + 10 = 0 \) \(\Leftrightarrow 3\cos 2x - 4\sin 2x + 5 = 0\) \( \Leftrightarrow 4\sin 2x - 3\cos 2x = 5\)

\( \Leftrightarrow {4 \over 5}\sin 2x - {3 \over 5}\cos 2x = 1\,\,\left( 1 \right)\)

Vì \({\left( {{4 \over 5}} \right)^2} + {\left( {{3 \over 5}} \right)^2} = 1\) nên có số \(α\) sao cho \(\cos \alpha  = {4 \over 5}\,\text{ và }\,\sin \alpha  = {3 \over 5}\)

Thay vào (1), ta được :

\(\eqalign{  & \sin 2x\cos \alpha  - \sin\alpha \cos 2x = 1  \cr  &  \Leftrightarrow \sin \left( {2x - \alpha } \right) = 1  \cr  &  \Leftrightarrow 2x - \alpha  = {\pi  \over 2} + k2\pi   \cr  &  \Leftrightarrow x = {1 \over 2}\left( {\alpha  + {\pi  \over 2} + k2\pi } \right)\,\,\left( {k \in\mathbb Z} \right) \cr} \)

LG c

\(y = {\cos ^2}x + \sin x\)

Lời giải chi tiết:

Với mọi \(x \in\mathbb R\), ta có: \(y' =  - 2\cos x{\mathop{\rm sinx}\nolimits}  + cosx \) \(= cosx\left( {1 - 2\sin x} \right)\)

\(\eqalign{  & y' = 0 \Leftrightarrow \cos x\left( {1 - 2\sin x} \right) = 0\cr & \Leftrightarrow \left[ {\matrix{   { \cos x = 0 }  \cr   {1 - 2\sin x = 0 }  \cr  } } \right.   \cr  & \Leftrightarrow  \left[ {\matrix{   {x = {\pi  \over 2} + k\pi}  \cr   {{\mathop{\rm sinx}\nolimits}  = {1 \over 2} \Leftrightarrow \left[ {\matrix{   {x = {\pi  \over 6} + k2\pi }  \cr   {x = {{5\pi } \over 6} + k2\pi }  \cr  } } \right. }  \cr  } } \right.  \cr} \)

Vậy \(x = {\pi  \over 2} + k\pi ;x = {\pi  \over 6} + k2\pi ;\) \(x = {{5\pi } \over 6} + k2\pi \left( {k \in\mathbb Z} \right)\)

LG d

\(y = \tan x + \cot x\)

Lời giải chi tiết:

\(\eqalign{  & y' = {1 \over {{{\cos }^2}x}} - {1 \over {{{\sin }^2}x}}\,\forall\,x \ne k{\pi  \over 2}  \cr  & y' = 0 \Leftrightarrow {1 \over {{{\cos }^2}x}} = {1 \over {{{\sin }^2}x}} \cr & \Leftrightarrow {\sin ^2}x = {\cos ^2}x\cr &\Leftrightarrow {\tan ^2}x = 1  \cr  &  \Leftrightarrow \tan x =  \pm 1 \Leftrightarrow x =  \pm {\pi  \over 4} + k\pi \cr &k \in \mathbb Z \cr} \)


Cùng chủ đề:

Câu 35 trang 68 SGK Hình học 11 Nâng cao
Câu 35 trang 83 SGK Đại số và Giải tích 11 Nâng cao
Câu 35 trang 118 SGK Hình học 11 Nâng cao
Câu 35 trang 121 SGK Đại số và Giải tích 11 Nâng cao
Câu 35 trang 163 SGK Đại số và Giải tích 11 Nâng cao
Câu 35 trang 212 SGK Đại số và Giải tích 11 Nâng cao
Câu 36 trang 42 SGK Đại số và Giải tích 11 Nâng cao
Câu 36 trang 68 SGK Hình học 11 Nâng cao
Câu 36 trang 83 SGK Đại số và Giải tích 11 Nâng cao
Câu 36 trang 121 SGK Đại số và Giải tích 11 Nâng cao
Câu 36 trang 163 SGK Đại số và Giải tích 11 Nâng cao