Câu 36 trang 121 SGK Đại số và Giải tích 11 Nâng cao — Không quảng cáo

Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học Bài 4. Cấp số nhân


Câu 36 trang 121 SGK Đại số và Giải tích 11 Nâng cao

Tính các tổng sau :

Tính các tổng sau :

LG a

Tổng tất cả các số hạng của một cấp số nhân, biết rằng số hạng đầu bằng 18, số hạng thứ hai bằng 54 và số hạng cuối bằng 39 366;

Phương pháp giải:

- Tính \(q = \frac{{{u_2}}}{{{u_1}}}\)

- Tính số các số hạng của CSN theo công thức \({u_n} = {u_1}{q^{n - 1}}\)

- Tính tổng \[{S_n} = \frac{{{u_1}\left( {1 - {q^n}} \right)}}{{1 - q}}\]

Lời giải chi tiết:

Gọi q là công bội của cấp số nhân đã cho.

Ta có:  \(q = {{{u_2}} \over {{u_1}}} = {{54} \over {18}} = 3\)

Giả sử cấp số nhân có n số hạng ta có :

\(\eqalign{ & 39366 = {u_n} = {u_1}.{q^{n - 1}} = {18.3^{n - 1}} \cr & \Rightarrow {3^{n - 1}} = {{39366} \over {18}} = 2187 = {3^7} \cr&\Rightarrow n = 8 \cr & \Rightarrow {S_8} = {u_1}.{{1 - {q^8}} \over {1 - q}} = 18.{{1 - {3^8}} \over {1 - 3}} \cr&= 59040 \cr} \)

LG b

Tổng tất cả các số hạng của một cấp số nhân, biết rằng số hạng đầu bằng \({1 \over {256}}\) , số hạng thứ hai bằng \({{ - 1} \over {512}}\) và số hạng cuối bằng  \({1 \over {1048576}}\)

Lời giải chi tiết:

Ta có:

\(\eqalign{ & q = {{{u_2}} \over {{u_1}}} = - {1 \over 2} \cr & {u_n} = {u_1}.{q^{n - 1}} \cr&\Rightarrow {1 \over {1048576}} = {1 \over {256}}.{\left( { - {1 \over 2}} \right)^{n - 1}} \cr & \Leftrightarrow {\left( { - \frac{1}{2}} \right)^{n - 1}} = \frac{1}{{4096}} = {\left( { - \frac{1}{2}} \right)^{12}} \cr&\Leftrightarrow n - 1 = 12 \Leftrightarrow n = 13\cr& \Rightarrow {S_{13}} = {1 \over {256}}.{{1 - {{\left( {{{ - 1} \over 2}} \right)}^{13}}} \over {1 - \left( { - {1 \over 2}} \right)}}\cr& = {{2731} \over {1048576}} \cr} \)


Cùng chủ đề:

Câu 35 trang 163 SGK Đại số và Giải tích 11 Nâng cao
Câu 35 trang 212 SGK Đại số và Giải tích 11 Nâng cao
Câu 36 trang 42 SGK Đại số và Giải tích 11 Nâng cao
Câu 36 trang 68 SGK Hình học 11 Nâng cao
Câu 36 trang 83 SGK Đại số và Giải tích 11 Nâng cao
Câu 36 trang 121 SGK Đại số và Giải tích 11 Nâng cao
Câu 36 trang 163 SGK Đại số và Giải tích 11 Nâng cao
Câu 36 trang 212 SGK Đại số và Giải tích 11 Nâng cao
Câu 37 trang 46 SGK Đại số và Giải tích 11 Nâng cao
Câu 37 trang 68 SGK Hình học 11 Nâng cao
Câu 37 trang 83 SGK Đại số và Giải tích 11 Nâng cao