Câu 7 trang 100 SGK Đại số và Giải tích 11 Nâng cao — Không quảng cáo

Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học Bài 1. Phương pháp quy nạp toán học


Câu 7 trang 100 SGK Đại số và Giải tích 11 Nâng cao

Chứng minh rằng :

Đề bài

Cho số thực \(x > -1\). Chứng minh rằng :

\({\left( {1 + x} \right)^n} \ge 1 + nx\)   (1)

Với mọi số nguyên dương n.

Lời giải chi tiết

+) Với \(n = 1\), ta có  \({\left( {1 + x} \right)^1} = 1 + x = 1 + 1.x\)

Như vậy, ta có (1) đúng khi \(n = 1\)

+) Giả sử đã có (1) đúng khi \(n = k, k \in \mathbb N^*\), tức là:

\({\left( {1 + x} \right)^k} \ge 1 + kx\)

+) Ta sẽ chứng minh nó cũng đúng khi \(n = k + 1\).

Thật vậy, từ giả thiết \(x > -1\) nên \((1+x)>0\)

Theo giả thiết qui nạp, ta có : \({\left( {1 + x} \right)^k} \ge 1 + kx\)   (2)

Nhân hai vế của (2) với \((1+x)\) ta được:

\(\eqalign{ & {\left( {1 + x} \right)^{k + 1}} \ge \left( {1 + x} \right)\left( {1 + kx} \right) \cr & = 1 + x + kx + k{x^2}\cr&= 1 + \left( {k + 1} \right)x + k{x^2} \cr&\ge 1 + \left( {k + 1} \right)x \cr} \)

Từ các chứng minh trên suy ra (1) đúng với mọi \(n \in \mathbb N^*\).


Cùng chủ đề:

Câu 7 trang 50 SGK Hình học 11 Nâng cao
Câu 7 trang 62 SGK Đại số và Giải tích 11 Nâng cao
Câu 7 trang 78 SGK Hình học 11 Nâng cao
Câu 7 trang 79 SGK Hình học 11 Nâng cao
Câu 7 trang 95 SGK Hình học 11 Nâng cao
Câu 7 trang 100 SGK Đại số và Giải tích 11 Nâng cao
Câu 7 trang 121 SGK Hình học 11 Nâng cao
Câu 7 trang 123 SGK Hình học 11 Nâng cao
Câu 7 trang 125 SGK Hình học 11 Nâng cao
Câu 7 trang 135 SGK Đại số và Giải tích 11 Nâng cao
Câu 7 trang 192 SGK Đại số và Giải tích 11 Nâng cao