Giải bài 1 trang 27 SGK Toán 7 tập 1 - Chân trời sáng tạo
Thực hiện phép tính.
Đề bài
Thực hiện phép tính.
a)\(\frac{2}{5} + \frac{3}{5}:\left( { - \frac{3}{2}} \right) + \frac{1}{2};\)
b)\(2\frac{1}{3} + {\left( { - \frac{1}{3}} \right)^2} - \frac{3}{2};\)
c)\(\left( {\frac{7}{8} - 0,25} \right):{\left( {\frac{5}{6} - 0,75} \right)^2};\)
d)\(\left( { - 0,75} \right) - \left[ {\left( { - 2} \right) + \frac{3}{2}} \right]:1,5 + \left( {\frac{{ - 5}}{4}} \right)\)
Phương pháp giải - Xem chi tiết
Thực hiện phép tính theo thứ tự: ( ) =>[ ] . Sau đó đến các phép tính ngoài ngoặc.
Thực hiện phép tính bằng cách đưa các số về dạng phân số rồi quy đồng mẫu các phân số.
Lời giải chi tiết
a)
\(\begin{array}{l}\frac{2}{5} + \frac{3}{5}:\left( { - \frac{3}{2}} \right) + \frac{1}{2}\\ = \frac{2}{5} + \frac{3}{5}.\left( {\frac{{ - 2}}{3}} \right) + \frac{1}{2}\\ = \frac{2}{5} + \frac{{ - 2}}{5} + \frac{1}{2}\\ =0+ \frac{1}{2}\\= \frac{1}{2}\end{array}\)
b)
\(\begin{array}{l}2\frac{1}{3} + {\left( { - \frac{1}{3}} \right)^2} - \frac{3}{2}\\ = \frac{7}{3} + \frac{1}{9} - \frac{3}{2}\\ = \frac{{42}}{{18}} + \frac{2}{{18}} - \frac{{27}}{{18}}\\ = \frac{{17}}{{18}}\end{array}\)
c)
\(\begin{array}{l}\left( {\frac{7}{8} - 0,25} \right):{\left( {\frac{5}{6} - 0,75} \right)^2}\\ = \left( {\frac{7}{8} - \frac{1}{4}} \right):\left( {\frac{5}{6} - \frac{3}{4}} \right)^2\\ = \left( {\frac{7}{8} - \frac{2}{8}} \right):\left( {\frac{{10}}{{12}} - \frac{9}{{12}}} \right)^2\\ = \frac{5}{8}:(\frac{1}{{12}})^2\\ =\frac{5}{8}:\frac{1}{144}\\= \frac{5}{8}.144\\ = 90\end{array}\)
d)
\(\begin{array}{l}\left( { - 0,75} \right) - \left[ {\left( { - 2} \right) + \frac{3}{2}} \right]:1,5 + \left( {\frac{{ - 5}}{4}} \right)\\ = \left( {\frac{{ - 75}}{100}} \right) - \left[ {-2 + \frac{3}{2}} \right]:\frac{15}{10} + \left( {\frac{{ - 5}}{4}} \right)\\= \left( {\frac{{ - 3}}{4}} \right) - \left[ {\frac{{ - 4}}{2} + \frac{3}{2}} \right]:\frac{3}{2} + \left( {\frac{{ - 5}}{4}} \right)\\ = \left( {\frac{{ - 3}}{4}} \right) - (\frac{{ - 1}}{2}).\frac{2}{3} + \left( {\frac{{ - 5}}{4}} \right)\\ = \left( {\frac{{ - 3}}{4}} \right) + {\frac{{ 1}}{3}} + \frac{-5}{4}\\= \left( {\frac{{ - 3}}{4}} \right) + \left( {\frac{{ - 5}}{4}} \right) + \frac{1}{3}\\ = \frac{-8}{4} + \frac{1}{3}\\= - 2 + \frac{1}{3}\\ = \frac{{ - 6}}{3} + \frac{1}{3}\\ = \frac{{ - 5}}{3}\end{array}\)