Giải bài 1 trang 94 vở thực hành Toán 9 tập 2 — Không quảng cáo

Giải vth Toán 9, soạn vở thực hành Toán 9 KNTT Luyện tập chung trang 94 trang 94, 95, 96 Vở thực hành


Giải bài 1 trang 94 vở thực hành Toán 9 tập 2

Cho tam giác ABC nội tiếp đường tròn (O). Biết rằng (widehat {BOC} = {120^o}) và (widehat {OCA} = {20^o}). Tính số đo các góc của tam giác ABC.

Đề bài

Cho tam giác ABC nội tiếp đường tròn (O). Biết rằng \(\widehat {BOC} = {120^o}\) và \(\widehat {OCA} = {20^o}\). Tính số đo các góc của tam giác ABC.

Phương pháp giải - Xem chi tiết

+ Ta có \(\widehat A = \frac{{\widehat {BOC}}}{2}\) (góc nội tiếp và góc ở tâm cùng chắn cung nhỏ BC).

+ Tam giác AOC cân tại O nên \(\widehat {AOC} = {180^o} - \widehat {CAO} - \widehat {OCA} = 2.\widehat {OCA}\)

+ \(\widehat B = \frac{{\widehat {AOC}}}{2}\)

+ Do tổng các góc trong tam giác ABC bằng \({180^o}\) nên tính được góc C.

Lời giải chi tiết

Ta có \(\widehat A = \frac{{\widehat {BOC}}}{2} = {60^o}\) (góc nội tiếp và góc ở tâm cùng chắn cung nhỏ BC).

Tam giác AOC cân tại O nên \(\widehat {AOC} = {180^o} - \widehat {CAO} - \widehat {OCA}\) \( = {180^o} - 2.\widehat {OCA} = {140^o}\).

Suy ra \(\widehat B = \frac{{\widehat {AOC}}}{2} = {70^o}\).

Do tổng các góc trong tam giác ABC bằng \({180^o}\) nên \(\widehat C = {180^o} - \widehat {BAC} - \widehat {ABC} = {50^o}\).


Cùng chủ đề:

Giải bài 1 trang 82 vở thực hành Toán 9 tập 2
Giải bài 1 trang 84 vở thực hành Toán 9
Giải bài 1 trang 87 vở thực hành Toán 9 tập 2
Giải bài 1 trang 91 vở thực hành Toán 9
Giải bài 1 trang 92 vở thực hành Toán 9 tập 2
Giải bài 1 trang 94 vở thực hành Toán 9 tập 2
Giải bài 1 trang 98 vở thực hành Toán 9
Giải bài 1 trang 98, 99 vở thực hành Toán 9 tập 2
Giải bài 1 trang 102 vở thực hành Toán 9
Giải bài 1 trang 103 vở thực hành Toán 9 tập 2
Giải bài 1 trang 105, 106 vở thực hành Toán 9