Giải bài 10 trang 128 vở thực hành Toán 9 tập 2 — Không quảng cáo

Giải vth Toán 9, soạn vở thực hành Toán 9 KNTT Bài tập cuối chương X trang 124, 125, 126 Vở thực hành


Giải bài 10 trang 128 vở thực hành Toán 9 tập 2

Tính thể tích hình tạo thành khi cho hình bên quay quanh IH một vòng.

Đề bài

Tính thể tích hình tạo thành khi cho hình bên quay quanh IH một vòng.

Phương pháp giải - Xem chi tiết

+ Tính thể tích \({V_1}\) của hình trụ có bán kính \(AH = 3cm\), chiều cao \(AB = 12cm\).

+ Tính thể tích \({V_2}\) của hình nón có đường kính \(BC = 6cm\), chiều cao \(h = 12 - 8 = 4\left( {cm} \right)\).

+ Thể tích hình được tạo thành: \(V = {V_1} - {V_2}\)

Lời giải chi tiết

Thể tích hình trụ có bán kính \(AH = 3cm\), chiều cao \(AB = 12cm\) là:

\({V_1} = \pi {.3^2}.12 = 108\pi \left( {c{m^3}} \right)\).

Thể tích hình nón có đường kính đáy \(BC = 6cm\), chiều cao \(h = 12 - 8 = 4cm\) là:

\({V_2} = \frac{1}{3}\pi {.3^2}.4 = 12\pi \left( {c{m^3}} \right)\).

Thể tích của hình tạo thành là:

\(V = {V_1} - {V_2} = 108\pi  - 12\pi  = 96\pi \left( {c{m^3}} \right)\).


Cùng chủ đề:

Giải bài 10 trang 16 vở thực hành Toán 9 tập 2
Giải bài 10 trang 27 vở thực hành Toán 9
Giải bài 10 trang 38 vở thực hành Toán 9 tập 2
Giải bài 10 trang 70 vở thực hành Toán 9
Giải bài 10 trang 126 vở thực hành Toán 9
Giải bài 10 trang 128 vở thực hành Toán 9 tập 2
Giải bài 10 trang 135 vở thực hành Toán 9 tập 2
Giải bài 11 trang 28 vở thực hành Toán 9
Giải bài 11 trang 135, 136 vở thực hành Toán 9 tập 2
Giải bài 12 trang 28 vở thực hành Toán 9
Giải bài 12 trang 136 vở thực hành Toán 9 tập 2