Giải bài 11 trang 62 SBT toán 10 - Cánh diều
Trong mặt phẳng toạ độ Oxy, cho ba điểm không thẳng hàng M(1 ; – 2), N(3 ; 1), P(− 1 ; 2). Tìm toạ độ điểm Q sao cho tứ giác MNPQ là hình thang có MN // PQ và PQ = 2MN.
Đề bài
Trong mặt phẳng toạ độ Oxy , cho ba điểm không thẳng hàng M (1 ; – 2), N (3 ; 1), P (− 1 ; 2). Tìm toạ độ điểm Q sao cho tứ giác MNPQ là hình thang có MN // PQ và PQ = 2 MN .
Phương pháp giải - Xem chi tiết
Từ giả thiết tìm tọa độ điểm Q thỏa mãn \(\overrightarrow {PQ} = 2\overrightarrow {NM} \)
Lời giải chi tiết
Ta có: MN // PQ nên \(\overrightarrow {MN} \) và \(\overrightarrow {PQ} \) cùng phương
Mặt khác, PQ = 2 MN \( \Rightarrow \overrightarrow {PQ} = 2\overrightarrow {NM} \)
Gọi tọa độ điểm Q là \(Q(a;b)\). Ta có: \(\overrightarrow {PQ} = (a + 1;b - 2)\) và \(\overrightarrow {NM} = ( - 2; - 3)\)
\( \Rightarrow \overrightarrow {PQ} = 2\overrightarrow {NM} \Leftrightarrow \left\{ \begin{array}{l}a + 1 = 2.( - 2)\\b - 2 = 2.( - 3)\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a + 1 = - 4\\b - 2 = - 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = - 5\\b = - 4\end{array} \right.\) . Vậy Q (-5 ; -4)