Giải bài 14 trang 86 SGK Toán 8 tập 2– Chân trời sáng tạo — Không quảng cáo

Toán 8, giải toán lớp 8 chân trời sáng tạo Bài tập cuối chương 8 Toán 8 chân trời sáng tạo


Giải bài 14 trang 86 SGK Toán 8 tập 2– Chân trời sáng tạo

Cho tam giác

Đề bài

Cho tam giác \(ABC\)nhọn có hai đường cao \(BE,CF\) cắt nhau tại \(H\). Chứng minh rằng

a) \(\Delta AEB\backsim\Delta AFC\).

b) \(\frac{{HE}}{{HC}} = \frac{{HF}}{{HB}}\).

c) \(\Delta HEF\backsim\Delta HCB\)

Phương pháp giải - Xem chi tiết

- Nếu tam giác vuông này có một góc nhọn bằng một góc nhọn của tam giác vuông kia thì hai tam giác vuông đó đồng dạng.

- Nếu \(\Delta ABC\backsim\Delta A'B'C'\) thì \(\frac{{AB}}{{A'B'}} = \frac{{AC}}{{A'C'}} = \frac{{BC}}{{B'C'}} = k\).

- Hai tam giác đồng dạng có các góc tương ứng bằng nhau.

Lời giải chi tiết

a) Vì \(BE\)là đường cao nên \(\widehat {AEB} = 90^\circ \); vì \(CF\)là đường cao nên \(\widehat {AFC} = 90^\circ \)

Xét tam giác \(AEB\) và tam giác \(AFC\) có:

\(\widehat A\) (chung)

\(\widehat {AEB} = \widehat {AFC} = 90^\circ \) (chứng minh trên)

Suy ra, \(\Delta AEB\backsim\Delta AFC\) (g.g).

b) Vì \(\Delta AEB\backsim\Delta AFC\) nên \(\widehat {ACF} = \widehat {ABE}\) (hai góc tương ứng) hay \(\widehat {ECH} = \widehat {FBH}\).

Xét tam giác \(HEC\) và tam giác \(HFB\) có:

\(\widehat {ECH} = \widehat {FBH}\) (chứng minh trên)

\(\widehat {CEH} = \widehat {BFH} = 90^\circ \) (chứng minh trên)

Suy ra, \(\Delta HEC\backsim\Delta HFC\) (g.g).

Suy ra, \(\frac{{HE}}{{HF}} = \frac{{HC}}{{HB}}\) (các cặp cạnh tương ứng tỉ lệ)

Hay \(\frac{{HE}}{{HC}} = \frac{{HF}}{{HB}}\) (điều phải chứng minh).

c) Xét tam giác \(HEF\) và tam giác \(HCB\) có:

\(\widehat {FHE} = \widehat {BHC}\) (hai góc đối đỉnh)

\(\frac{{HE}}{{HC}} = \frac{{HF}}{{HB}}\) (chứng minh trên)

Suy ra, \(\Delta HEF\backsim\Delta HCB\) (c.g.c).


Cùng chủ đề:

Giải bài 12 trang 117 SGK Toán 8 tập 1– Chân trời sáng tạo
Giải bài 13 trang 60 SGK Toán 8 tập 2– Chân trời sáng tạo
Giải bài 13 trang 86 SGK Toán 8 tập 2– Chân trời sáng tạo
Giải bài 13 trang 118 SGK Toán 8 tập 1– Chân trời sáng tạo
Giải bài 14 trang 60 SGK Toán 8 tập 2– Chân trời sáng tạo
Giải bài 14 trang 86 SGK Toán 8 tập 2– Chân trời sáng tạo
Giải bài 14 trang 118 SGK Toán 8 tập 1– Chân trời sáng tạo
Giải bài 15 trang 60 SGK Toán 8 tập 2– Chân trời sáng tạo
Giải bài 15 trang 86 SGK Toán 8 tập 2– Chân trời sáng tạo
Giải bài 15 trang 118 SGK Toán 8 tập 1– Chân trời sáng tạo
Giải bài 16 trang 60 SGK Toán 8 tập 2– Chân trời sáng tạo