Lý thuyết Quy tắc dấu ngoặc Toán 6 KNTT với cuộc sống ngắn gọn, đầy đủ, dễ hiểu
Viết tổng sau dưới dạng không có dấu ngoặc rồi tính giá trị của nó: (-23) – 15 - (-23) + 5 + (-10).
Tính và so sánh kết quả của: a) 4 + (12 – 15) và 4 + 12 – 15; b) 4 - (12 - 15) và 4 - 12 + 15
Tính và so sánh kết quả của 4 - (12 – 15) và 4 - 12 + 15. Hãy nhận xét về sự thay đổi dấu của các số hạng trong dấu ngoặc trước và sau khi bỏ dấu ngoặc.
Bỏ dấu ngoặc rồi tính các tổng sau: a) (-385 + 210) + (385 - 217); b) (72 - 1 956) - (-1956 + 28).
Tính một cách hợp lí: a) 12 +13 + 14 - 15 - 16 - 17; b) (35-17) - (25 - 7 + 22).
Cho bảng 3 x 3 ô vuông như hình 3.17. a) Biết rằng tổng các số trong mỗi hàng, mỗi cột, mỗi đường chéo đều bằng 0. Tính tổng các số trong bảng đó. b) Hãy thay các chữ trong bảng bởi số thích hợp sao cho tổng các số trong mỗi hàng, mỗi cột, mỗi đường chéo đều bằng 0.
Bỏ dấu ngoặc và tính các tổng sau: a) -321 + (-29) - 142-(-72); b) 214-(-36) + (-305).
Tính một cách hợp lí: a) 21 - 22 + 23 - 24; b) 125 - (115 - 99).
Bỏ dấu ngoặc rồi tính: a) (56 - 27) - (11 + 28 -16); b) 28 + (19 - 28) - (32 - 57).
Tính một cách hợp lí: a) 232 - (581 + 132 - 331); b) [12 + (-57)) – [-57- (-12)].
Tính giá trị của các biểu thức sau: a) (23 + x) - (56 – x) với x = 7; b) 25 – x - (29 + y - 8) với x = 13, y = 11.