Giải bài 18 trang 80 SBT toán 10 - Cánh diều — Không quảng cáo

SBT Toán 10 - Giải SBT Toán 10 - Cánh diều Bài 2. Giải tam giác. Tính diện tích tam giác - SBT Toá


Giải bài 18 trang 80 SBT toán 10 - Cánh diều

Một người đi dọc bờ biển từ vị trí A đến vị trí B và quan sát một con tàu C đang neo đậu ngoài khơi.

Đề bài

Một người đi dọc bờ biển từ vị trí A đến vị trí B và quan sát một con tàu C đang neo đậu ngoài khơi. Người đó tiến hành đo đạc và thu được kết quả: \(AB = 30m,\widehat {CAB} = {60^0},\widehat {CBA} = {50^0}\) (Hình 23). Tính khoảng cách từ vị trí A đến con tàu C (làm tròn kết quả đến hàng phần mười theo đơn vị mét)?

Phương pháp giải - Xem chi tiết

Bước 1: Tính số đo góc \(\widehat {ACB}\)

Bước 2:  Sử dụng định lí sin để tính độ dài AC của ∆ ABC rồi kết luận

Lời giải chi tiết

Ta có: \(\widehat {ACB} = {180^0} - (\widehat {CBA} + \widehat {CAB}) = {70^0}\)

Áp dụng định lí sin cho ∆ ABC ta có: \(\frac{{AC}}{{\sin \widehat {CBA}}} = \frac{{AB}}{{\sin \widehat {ACB}}} \Rightarrow AC = \frac{{AB.\sin \widehat {CBA}}}{{\sin \widehat {ACB}}} = \frac{{30.\sin {{50}^0}}}{{\sin {{70}^0}}} \approx 24,5\)

Vậy khoảng cách từ vị trí A đến con tàu C là 24,5 m


Cùng chủ đề:

Giải bài 18 trang 14 sách bài tập toán 10 - Cánh diều
Giải bài 18 trang 31 SBT toán 10 - Cánh diều
Giải bài 18 trang 38 sách bài tập toán 10 - Cánh diều
Giải bài 18 trang 48 SBT toán 10 - Cánh diều
Giải bài 18 trang 67 SBT toán 10 - Cánh diều
Giải bài 18 trang 80 SBT toán 10 - Cánh diều
Giải bài 19 trang 11 sách bài tập toán 10 - Cánh diều
Giải bài 19 trang 14 sách bài tập toán 10 - Cánh diều
Giải bài 19 trang 31 SBT toán 10 - Cánh diều
Giải bài 19 trang 39 sách bài tập toán 10 - Cánh diều
Giải bài 19 trang 48 SBT toán 10 - Cánh diều