Giải bài 2.3 trang 18 sách bài tập toán 10 - Kết nối tri thức với cuộc sống
Xác định một bất phương trình bậc nhất hai ẩn nhân nửa mặt phẳng bờ là đường thẳng d (miền không bị gạch) làm miền nghiệm.
Đề bài
Xác định một bất phương trình bậc nhất hai ẩn nhân nửa mặt phẳng bờ là đường thẳng \(d\) (miền không bị gạch) làm miền nghiệm.
Phương pháp giải - Xem chi tiết
- Gọi đường thẳng \(d\) cần tìm là: \(d:y = ax + b,\,\,\left( {a \ne 0} \right).\)
- Xác định đường thẳng \(d\)
- Từ miền nghiệm của bất phương trình, kết luận bất phương trình cần tìm.
Lời giải chi tiết
Gọi đường thẳng \(d\) cần tìm là: \(d:y = ax + b,\,\,\left( {a \ne 0} \right).\)
Nhìn vào độ thị thì đường thẳng \(d\) đi qua điểm \(A\left( {4;0} \right)\) và \(B\left( {0; - 2} \right)\)
Thay điểm \(A\left( {4;0} \right)\) vào \(d\) ta được: \(4a + b = 0.\)
Thay điểm \(B\left( {0; - 2} \right)\) vào \(d\) ta được: \(0a + b = - 2\,\, \Rightarrow \,\,b = - 2\)
Ta có hệ phương trình: \(\left\{ {\begin{array}{*{20}{c}}{4a + b = 0}\\{b = - 2}\end{array}} \right.\,\, \Rightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{a = \frac{1}{2}}\\{b = - 2}\end{array}} \right.\)
\( \Rightarrow \,\,d:y = \frac{1}{2}x - 2\,\, \Leftrightarrow \,\,x - 2y = 4.\)
Vì miền nghiệm của đồ thị là nửa mặt phẳng bờ \(d\) chứa điểm \(O\) nên bất phương trình cần tìm là: \(x - 2y \le 4\)