Giải bài 2. 6 trang 23 sách bài tập toán 10 - Kết nối tri thức với cuộc sống — Không quảng cáo

Bài 4. Hệ bất phương trình bậc nhất hai ẩn - SBT Toán 1


Giải bài 2.6 trang 23 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

Biểu diễn miền nghiệm của các hệ bất phương trình sau trên mặt phẳng tọa độ:

Đề bài

Biểu diễn miền nghiệm của các hệ bất phương trình sau trên mặt phẳng tọa độ:

a) \(\left\{ {\begin{array}{*{20}{c}}{x \ge  - 1}\\{y \ge 0}\\{x + y \le 4}\end{array}} \right.\)

b) \(\left\{ {\begin{array}{*{20}{c}}{x > 0}\\{y > 0}\\{x - y - 4 < 0}\end{array}} \right.\)

c) \(\left\{ {\begin{array}{*{20}{c}}{y \le 3}\\{x \le 3}\\{x \ge  - 1}\\{y \ge  - 2}\end{array}} \right.\)

Phương pháp giải - Xem chi tiết

-  Vẽ các hệ bất phương trình trên mặt phẳng tọa độ \(Oxy.\)

-  Nhìn vào đồ thị xác định miền nghiệm của hệ bất phương trình đã cho.

Lời giải chi tiết

a)      \(\left\{ {\begin{array}{*{20}{c}}{x \ge  - 1}\\{y \ge 0}\\{x + y \le 4}\end{array}} \right.\)

Xác định miền nghiệm của bất phương trình \(x \ge  - 1\) là nửa mặt phẳng bờ \(d:x =  - 1\) chứa điểm \(O\left( {0;0} \right).\)

Xác định miền nghiệm của bất phương trình \(y \ge 0\) là nửa mặt phẳng bờ \(Ox\) chứa điểm \(\left( {0;4} \right).\)

Xác định miền nghiệm của bất phương trình\(x + y \le 4.\)

Vẽ đường thẳng \({d_2}:x + y = 4\) trên mặt phẳng tọa độ \(Oxy.\)

Chọn \(O\left( {0;0} \right)\) là điểm không thuộc đường thẳng \({d_2}\) và thay vào biểu thức \(x + y,\) ta được \(0 + 0 = 0 < 4.\)

Do đó, miền nghiệm của bất phương trình \({d_2}:x + y = 4\) là nửa mặt phẳng bờ \({d_2}\) và chứa điểm \(O\left( {0;0} \right).\)

Vậy miền nghiệm của hệ bất phương trình trên là: \(\Delta ABC\) với \(A\left( { - 1;0} \right),\,\,B\left( {4;0} \right),\,\,C\left( { - 1;5} \right).\)

b)     \(\left\{ {\begin{array}{*{20}{c}}{x > 0}\\{y > 0}\\{x - y - 4 < 0}\end{array}} \right.\)

Xác định miền nghiệm của bất phương trình \(x > 0\) là nửa mặt phẳng bờ \(Oy\) chứa điểm \(\left( {1;0} \right)\) mà bỏ đi trục \(Oy.\)

Xác định miền nghiệm của bất phương trình \(y > 0\) là nửa mặt phẳng bờ \(Ox\) chứa điểm \(\left( {0;1} \right)\) mà bỏ đi trục \(Ox.\)

Xác định miền nghiệm của bất phương trình \(x - y - 4 < 0\).

Vẽ đường thẳng \({d_2}:x - y - 4 = 0\) trên mặt phẳng tọa độ \(Oxy.\)

Chọn \(O\left( {0;0} \right)\) không thuộc đường thẳng \({d_2}\) và thay vào biểu thức \(x - y - 4,\) ta được \(0 - 0 - 4 =  - 4 < 0.\)

Do đó, miền nghiệm của bất phương trình \(x - y - 4 < 0\) là nửa mặt phẳng bờ \({d_2}\) chứa điểm \(O\left( {0;0} \right)\) không kể \({d_2}\).

Miền nghiệm của hệ bất phương trình trên là phần không có gạch.

c)      \(\left\{ {\begin{array}{*{20}{c}}{y \le 3}\\{x \le 3}\\{x \ge  - 1}\\{y \ge  - 2}\end{array}} \right.\)

Xác định miền nghiệm của bất phương trình \(y \le 3\) là nửa mặt phẳng bờ \(d:y = 3\) chứa điểm \(O\left( {0;0} \right).\)

Xác định miền nghiệm của bất phương trình \(x \le 3\) là nửa mặt phẳng bờ \({d_1}:x = 3\) chứa điểm \(O\left( {0;0} \right).\)

Xác định miền nghiệm của bất phương trình \(x \ge  - 1\) là nửa mặt phẳng bờ \({d_3}:x =  - 1\) chứa điểm \(O\left( {0;0} \right).\)

Xác định miền nghiệm của bất phương trình \(y \ge  - 2\) là nửa mặt phẳng bờ \({d_4}:y =  - 2\) chứa điểm \(O\left( {0;0} \right).\)

Miền nghiệm của hệ bất phương trình trên là: hình chữ nhật \(ABCD\) với \(A\left( { - 1;3} \right),\,\,B\left( { - 1; - 2} \right),\,\,C\left( {3; - 2} \right),\,\,D\left( {3;3} \right).\)


Cùng chủ đề:

Giải bài 2. 1 trang 18 sách bài tập toán 10 - Kết nối tri thức với cuộc sống
Giải bài 2. 2 trang 18 sách bài tập toán 10 - Kết nối tri thức với cuộc sống
Giải bài 2. 3 trang 18 sách bài tập toán 10 - Kết nối tri thức với cuộc sống
Giải bài 2. 4 trang 19 sách bài tập toán 10 - Kết nối tri thức với cuộc sống
Giải bài 2. 5 trang 19 sách bài tập toán 10 - Kết nối tri thức với cuộc sống
Giải bài 2. 6 trang 23 sách bài tập toán 10 - Kết nối tri thức với cuộc sống
Giải bài 2. 7 trang 23 sách bài tập toán 10 - Kết nối tri thức với cuộc sống
Giải bài 2. 8 trang 23 sách bài tập toán 10 - Kết nối tri thức với cuộc sống
Giải bài 2. 9 trang 23 sách bài tập toán 10 - Kết nối tri thức với cuộc sống
Giải bài 2. 10 trang 24 sách bài tập toán 10 - Kết nối tri thức với cuộc sống
Giải bài 2. 11 trang 24 sách bài tập toán 10 - Kết nối tri thức với cuộc sống