Giải bài 3. 42 trang 74 SGK Toán 8 tập 1 - Kết nối tri thức — Không quảng cáo

Toán 8, giải toán lớp 8 kết nối tri thức với cuộc sống Bài tập cuối chương 3 Toán 8 kết nối tri thức


Giải bài 3.42 trang 74 SGK Toán 8 tập 1 - Kết nối tri thức

Chứng minh rằng nếu tứ giác có hai đường chéo bằng nhau

Đề bài

Chứng minh rằng nếu tứ giác có hai đường chéo bằng nhau và một cặp cạnh đối bằng nhau thì tứ giác đó là một hình thang cân

Phương pháp giải - Xem chi tiết

Giả sử tứ giác ABCD có hai đường chéo bằng nhau AC = BD và AD  = BC. Chứng minh ABCD là hình thang mà AC = BD nên ABCD là hình thang cân.

Lời giải chi tiết

Gọi O là giao điểm của AC và BD.

Xét ∆ABC và ∆BAD có:

AD = BC (giả thiết)

AC = BD (giả thiết)

Cạnh AB chung

Do đó ∆ABC = ∆BAD (c.c.c)

Suy ra \(\widehat {A{\rm{D}}B} = \widehat {ACB}\) (hai góc tương ứng).

Xét ∆ACD và ∆BDC có:

AD = BC (giả thiết)

AC = BD (giả thiết)

Cạnh CD chung

Do đó ∆ADC = ∆BCD (c.c.c)

Suy ra \(\widehat {DAC} = \widehat {CB{\rm{D}}}\) (hai góc tương ứng).

Xét ∆OAD và ∆OBC có:

\(\widehat {A{\rm{D}}B} = \widehat {ACB}\) (chứng minh trên)

AD = BC (giả thiết)

\(\widehat {DAC} = \widehat {CB{\rm{D}}}\) (chứng minh trên)

Do đó ∆OAD = ∆OBC (g.c.g).

Suy ra OA = OB; OC = OD (các cặp cạnh tương ứng).

Khi đó, các tam giác OAB, OCD là tam giác cân tại O.

Suy ra \(\widehat {OAB} = \widehat {OBA};\widehat {OC{\rm{D}}} = \widehat {O{\rm{D}}C}\)

Xét ∆OAB và ∆OCD cân tại O có:

• \(\widehat {AOB} = \widehat {CO{\rm{D}}}\) (hai góc đối đỉnh)

• \(\widehat {OAB} = \widehat {OBA};\widehat {OC{\rm{D}}} = \widehat {O{\rm{D}}C}\)

• \(\widehat {OAB} + \widehat {OBA} + \widehat {AOB} = \widehat {OC{\rm{D}}} + \widehat {O{\rm{D}}C} + \widehat {CO{\rm{D}}} = {180^o}\)

\(\begin{array}{l}\widehat {OAB} + \widehat {OBA} = \widehat {OC{\rm{D}}} + \widehat {O{\rm{D}}C}\\2\widehat {OAB} = 2\widehat {OC{\rm{D}}}\end{array}\)

Suy ra \(\widehat {OAB} = \widehat {OC{\rm{D}}}\) mà hai góc này ở vị trí so le trong.

Do đó AB // CD.

Tứ giác ABCD có AB // CD nên ABCD là hình thang.

Hình thang ABCD có hai đường chéo AC = BD.

Do đó tứ giác ABCD là hình thang cân.

Vậy nếu tứ giác có hai đường chéo bằng nhau và một cặp cạnh đối bằng nhau thì tứ giác đó là một hình thang cân.


Cùng chủ đề:

Giải bài 3. 37 trang 73 SGK Toán 8 tập 1 - Kết nối tri thức
Giải bài 3. 38 trang 73 SGK Toán 8 tập 1 - Kết nối tri thức
Giải bài 3. 39 trang 74 SGK Toán 8 tập 1 - Kết nối tri thức
Giải bài 3. 40 trang 74 SGK Toán 8 tập 1 - Kết nối tri thức
Giải bài 3. 41 trang 74 SGK Toán 8 tập 1 - Kết nối tri thức
Giải bài 3. 42 trang 74 SGK Toán 8 tập 1 - Kết nối tri thức
Giải bài 3. 43 trang 74 SGK Toán 8 tập 1 - Kết nối tri thức
Giải bài 3. 44 trang 74 SGK Toán 8 tập 1 - Kết nối tri thức
Giải bài 3. 45 trang 75 SGK Toán 8 tập 1 - Kết nối tri thức
Giải bài 4 trang 114 SGK Toán 8 tập 1 - Kết nối tri thức
Giải bài 4 trang 135 SGK Toán 8 tập 2 - Kết nối tri thức