Giải bài 4 trang 17 SGK Toán 8 tập 1 - Cánh diều — Không quảng cáo

Toán 8, giải toán lớp 8 cánh diều Bài 2. Các phép tính với đa thức nhiều biến Toán 8 cánh


Giải bài 4 trang 17 SGK Toán 8 tập 1 - Cánh diều

a) Rút gọn rồi tính giá trị biểu thức:

Đề bài

a) Rút gọn rồi tính giá trị biểu thức:

\(P = \left( {5{{\rm{x}}^2} - 2{\rm{x}}y + {y^2}} \right) - \left( {{x^2} + {y^2}} \right) - \left( {4{{\rm{x}}^2} - 5{\rm{x}}y + 1} \right)\) khi x = 1,2 và x + y = 6,2

b) Chứng minh giá trị của biểu thức sau không phụ thuộc vào giá trị của biến a:

\(\left( {{x^2} - 5{\rm{x}} + 4} \right)\left( {2{\rm{x}} + 3} \right) - \left( {2{{\rm{x}}^2} - x - 10} \right)\left( {x - 3} \right)\)

Phương pháp giải - Xem chi tiết

a) Tìm giá trị y.

- Rút gọn biểu thức P rồi thay các giá trị x , y đã cho và tính được vào biểu thức P đã rút gọn.

b) Thực hiện theo quy tắc nhân đa thức với đa thức để rút gọn biểu thức không phụ thuộc vào biến x.

Lời giải chi tiết

a) Vì x = 1,2 và x + y = 6,2 nên \(y = 6,2 - x = 6,2 - 1,2 = 5\)

\(\begin{array}{l}P = \left( {5{{\rm{x}}^2} - 2{\rm{x}}y + {y^2}} \right) - \left( {{x^2} + {y^2}} \right) - \left( {4{{\rm{x}}^2} - 5{\rm{x}}y + 1} \right)\\P = 5{{\rm{x}}^2} - 2{\rm{x}}y + {y^2} - {x^2} - {y^2} - 4{{\rm{x}}^2} + 5{\rm{x}}y - 1\\P = \left( {5{{\rm{x}}^2} - {x^2} - 4{{\rm{x}}^2}} \right) + \left( {{y^2} - {y^2}} \right) + \left( { - 2{\rm{x}}y + 5{\rm{x}}y} \right)\\P = 3{\rm{x}}y - 1 \end{array}\)

Thay x = 1,2; y = 5 vào biểu thức P = 3xy - 1 ta được

\(P = 3.1,2.5 - 1 = 17\)

Vậy P = 17

b) Ta có:

\(\begin{array}{l}\left( {{x^2} - 5{\rm{x}} + 4} \right)\left( {2{\rm{x}} + 3} \right) - \left( {2{{\rm{x}}^2} - x - 10} \right)\left( {x - 3} \right)\\ = {x^2}.2{\rm{x}} + {x^2}.3 - 5{\rm{x}}.2{\rm{x}} - 5{\rm{x}}.3 + 4.2{\rm{x}} + 4.3 - {\rm{[2}}{{\rm{x}}^2}.x + 2{{\rm{x}}^2}.( - 3) - x.x - x.( - 3) - 10.x - 10.( - 3){\rm{]}}\\ = 2{{\rm{x}}^3} + 3{{\rm{x}}^2} - 10{{\rm{x}}^2} - 15{\rm{x}} + 8{\rm{x}} + 12 - 2{{\rm{x}}^3} + 6{\rm{x}}{}^2 + {x^2} - 3{\rm{x}} + 10{\rm{x}} - 30\\ = \left( {2{{\rm{x}}^3} - 2{{\rm{x}}^3}} \right) + \left( {3{{\rm{x}}^2} - 10{{\rm{x}}^2} + 6{{\rm{x}}^2} + {x^2}} \right) + ( - 15{\rm{x}} + 8{\rm{x}} - 3{\rm{x}} + 10{\rm{x}}) +(12-30)\\ =  - 18\end{array}\)

Vậy biểu thức đã cho bằng -18 nên không phụ thuộc vào biến x


Cùng chủ đề:

Giải bài 3 trang 115 SGK Toán 8 tập 1 - Cánh diều
Giải bài 3 trang 119 SGK Toán 8 tập 1 - Cánh diều
Giải bài 3 trang 120 SGK Toán 8 tập 1 - Cánh diều
Giải bài 4 trang 8 SGK Toán 8 – Cánh diều
Giải bài 4 trang 10 SGK Toán 8 tập 1 - Cánh diều
Giải bài 4 trang 17 SGK Toán 8 tập 1 - Cánh diều
Giải bài 4 trang 18 SGK Toán 8 – Cánh diều
Giải bài 4 trang 23 SGK Toán 8 tập 1 - Cánh diều
Giải bài 4 trang 25 SGK Toán 8 – Cánh diều
Giải bài 4 trang 27 SGK Toán 8 tập 1 - Cánh diều
Giải bài 4 trang 28 SGK Toán 8 tập 1 - Cánh diều