Giải bài 5 trang 27 SGK Toán 7 tập 1 - Chân trời sáng tạo — Không quảng cáo

Toán 7, giải toán lớp 7 chân trời sáng tạo Bài tập cuối chương 1 trang 27 SGK Toán 7 chân trời sán


Giải bài 5 trang 27 SGK Toán 7 tập 1 - Chân trời sáng tạo

Tìm x, biết:

Đề bài

Tìm x, biết:

a)\( - \frac{3}{5}.x = \frac{{12}}{{25}};\)

b)\(\frac{3}{5}x - \frac{3}{4} =  - 1\frac{1}{2};\)

c)\(\frac{2}{5} + \frac{3}{5}:x = 0,5;\)

d)\(\frac{3}{4} - \left( {x - \frac{1}{2}} \right) = 1\frac{2}{3}\)

e)\(2\frac{2}{{15}}:\left( {\frac{1}{3} - 5x} \right) =  - 2\frac{2}{5}\)

g)\({x^2} + \frac{1}{9} = \frac{5}{3}:3.\)

Phương pháp giải - Xem chi tiết

Muốn tìm thừa số chưa biết, ta lấy tích chia cho thừa số đã biết.

Muốn tìm số chia, ta lấy số bị chia chia cho thương.

Lời giải chi tiết

a)

\(\begin{array}{l} - \frac{3}{5}.x = \frac{{12}}{{25}}\\x = \frac{{12}}{{25}}:\frac{{ - 3}}{5}\\x = \frac{{12}}{{25}}.\frac{{ - 5}}{3}\\x = \frac{{ - 4}}{5}\end{array}\)

Vậy \(x = \frac{{ - 4}}{5}\)

b)

\(\begin{array}{l}\frac{3}{5}x - \frac{3}{4} =  - 1\frac{1}{2};\\\frac{3}{5}x = \frac{{ - 3}}{2} + \frac{3}{4}\\\frac{3}{5}x = \frac{{ - 3}}{4}\\x = \frac{{ - 3}}{4}:\frac{3}{5}\\x = \frac{{ - 3}}{4}.\frac{5}{3}\\x = \frac{{ - 5}}{4}\end{array}\)

Vậy \(x = \frac{{ - 5}}{4}\).

c)

\(\begin{array}{l}\frac{2}{5} + \frac{3}{5}:x = 0,5\\\frac{3}{5}:x = \frac{1}{2} - \frac{2}{5}\\\frac{3}{5}:x = \frac{1}{{10}}\\x = \frac{3}{5}:\frac{1}{{10}}\\x = \frac{3}{5}.10\\x = 6\end{array}\)

Vậy \(x = 6\).

d)

\(\begin{array}{l}\frac{3}{4} - \left( {x - \frac{1}{2}} \right) = 1\frac{2}{3}\\x - \frac{1}{2} = \frac{3}{4} - \frac{5}{3}\\x - \frac{1}{2} = \frac{{ - 11}}{{12}}\\x = \frac{{ - 11}}{{12}} + \frac{1}{2}\\x = \frac{{ - 5}}{{12}}\end{array}\)

Vậy \(x = \frac{{ - 5}}{{12}}\).

e)

\(\begin{array}{l}2\frac{2}{{15}}:\left( {\frac{1}{3} - 5x} \right) =  - 2\frac{2}{5}\\\frac{{32}}{{15}}:\left( {\frac{1}{3} - 5x} \right) =  - \frac{{12}}{5}\\\frac{1}{3} - 5x = \frac{{32}}{{15}}:\frac{{ - 12}}{5}\\\frac{1}{3} - 5x = \frac{{32}}{{15}}.\frac{{ - 5}}{12}\\\frac{1}{3} - 5x = \frac{{ - 8}}{9}\\5x = \frac{1}{3} + \frac{8}{9}\\5x = \frac{{11}}{9}\\x = \frac{{11}}{9}:5\\x = \frac{{11}}{{45}}\end{array}\)

Vậy \(x = \frac{{11}}{{45}}\).

g)

\({x^2} + \frac{1}{9} = \frac{5}{3}:3\\{x^2} + \frac{1}{9} = \frac{5}{9}\\{x^2} = \frac{5}{9} - \frac{1}{9}\\{x^2} = \frac{4}{9}\\{x^2} = (\frac{2}{3})^2\\x = \frac{2}{3}\,\ hoặc \,\ x = \frac{-2}{3}\)

Vậy \(x \in \{\frac{2}{3};\frac{-2}{3}\}\).


Cùng chủ đề:

Giải bài 5 trang 15 SGK Toán 7 tập 1 - Chân trời sáng tạo
Giải bài 5 trang 20 SGK Toán 7 tập 2 - Chân trời sáng tạo
Giải bài 5 trang 21 SGK Toán 7 tập 1 - Chân trời sáng tạo
Giải bài 5 trang 23 SGK Toán 7 tập 2 - Chân trời sáng tạo
Giải bài 5 trang 25 SGK Toán 7 tập 1 - Chân trời sáng tạo
Giải bài 5 trang 27 SGK Toán 7 tập 1 - Chân trời sáng tạo
Giải bài 5 trang 28 SGK Toán 7 tập 2 - Chân trời sáng tạo
Giải bài 5 trang 32 SGK Toán 7 tập 2 - Chân trời sáng tạo
Giải bài 5 trang 34 SGK Toán 7 tập 1 - Chân trời sáng tạo
Giải bài 5 trang 36 SGK Toán 7 tập 2 - Chân trời sáng tạo
Giải bài 5 trang 38 SGK Toán 7 tập 1 - Chân trời sáng tạo