Giải bài 5 trang 35 sách bài tập toán 9 - Cánh diều tập 1 — Không quảng cáo

SBT Toán 9 - Giải SBT Toán 9 - Cánh diều Bài 1. Bất đẳng thức - SBT Toán 9 CD


Giải bài 5 trang 35 sách bài tập toán 9 - Cánh diều tập 1

Cho (x,y,z) là các số thực tùy ý. Chứng minh: (begin{array}{l}a){x^2} + {y^2} ge -2xy\b){x^2} + {y^2} + {z^2} ge xy + yz + zx\c)3left( {{x^2} + {y^2} + {z^2}} right) ge {left( {x + y + z} right)^2}end{array})

Đề bài

Cho \(x,y,z\) là các số thực tùy ý. Chứng minh:

\(\begin{array}{l}a){x^2} + {y^2} \ge - 2xy\\b){x^2} + {y^2} + {z^2} \ge xy + yz + zx\\c)3\left( {{x^2} + {y^2} + {z^2}} \right) \ge {\left( {x + y + z} \right)^2}\end{array}\)

Phương pháp giải - Xem chi tiết

a)    Áp dụng tính chất của hằng đẳng thức: \({\left( {x + y} \right)^2} \ge 0\)

b)   Cộng vế với vế của 3 bất đẳng thức \({\left( {x - y} \right)^2} \ge 0;{\left( {y - z} \right)^2} \ge 0;{\left( {z - x} \right)^2} \ge 0\).

c)    Xét hiệu \(3\left( {{x^2} + {y^2} + {z^2}} \right) - {\left( {x + y + z} \right)^2}\).

Lời giải chi tiết

a) Do \({\left( {x + y} \right)^2} \ge 0\forall x,y \in R\) nên \({x^2} + 2xy + {y^2} \ge 0\) hay \({x^2} + {y^2} \ge - 2xy\).

b) Với \(x,y,z\) là các số thực tùy ý ta có:

\({\left( {x - y} \right)^2} \ge 0;{\left( {y - z} \right)^2} \ge 0;{\left( {z - x} \right)^2} \ge 0\).

Cộng vế với vế của 3 bất đẳng thức trên, ta được:

\({\left( {x - y} \right)^2} + {\left( {y - z} \right)^2} + {\left( {z - x} \right)^2} \ge 0\)

\({x^2} - 2xy + {y^2} + {y^2} - 2yz + {z^2} + {z^2} - 2xz + {x^2} \ge 0\)

\(2\left( {{x^2} + {y^2} + {z^2}} \right) \ge 2\left( {xy + yz + xz} \right)\)

Vậy \({x^2} + {y^2} + {z^2} \ge xy + yz + zx\)

c) Xét hiệu

\(\begin{array}{l}3\left( {{x^2} + {y^2} + {z^2}} \right) - {\left( {x + y + z} \right)^2} = 3{x^2} + 3{y^2} + 3{z^2} - {x^2} - {y^2} - {z^2} - 2xy - 2yz - 2zx\\ = \left( {{x^2} - 2xy + {y^2}} \right) + \left( {{y^2} - 2yz + {z^2}} \right) + \left( {{x^2} - 2zx + {z^2}} \right) = {\left( {x - y} \right)^2} + {\left( {y - z} \right)^2} + {\left( {z - x} \right)^2}\end{array}\)

Do \({\left( {x - y} \right)^2} + {\left( {y - z} \right)^2} + {\left( {z - x} \right)^2} \ge 0\) nên \(3\left( {{x^2} + {y^2} + {z^2}} \right) - {\left( {x + y + z} \right)^2}\)

hay \(3\left( {{x^2} + {y^2} + {z^2}} \right) \ge {\left( {x + y + z} \right)^2}\).


Cùng chủ đề:

Giải bài 4 trang 102 sách bài tập toán 9 - Cánh diều tập 1
Giải bài 4 trang 107 sách bài tập toán 9 - Cánh diều tập 2
Giải bài 4 trang 124 sách bài tập toán 9 - Cánh diều tập 2
Giải bài 5 trang 10 sách bài tập toán 9 - Cánh diều tập 1
Giải bài 5 trang 13 sách bài tập toán 9 - Cánh diều tập 2
Giải bài 5 trang 35 sách bài tập toán 9 - Cánh diều tập 1
Giải bài 5 trang 53 sách bài tập toán 9 - Cánh diều tập 1
Giải bài 5 trang 57 sách bài tập toán 9 - Cánh diều tập 2
Giải bài 5 trang 82 sách bài tập toán 9 - Cánh diều tập 1
Giải bài 5 trang 85 sách bài tập toán 9 - Cánh diều tập 2
Giải bài 5 trang 102 sách bài tập toán 9 - Cánh diều tập 1