Giải bài 5 trang 75 SBT toán 10 - Cánh diều
Cho tam giác ABC có AB=6,AC=8,ˆA=1000. Tính độ dài cạnh BC và bán kính R của đường tròn ngoại tiếp tam giác (làm tròn kết quả đến hàng phần mười)
Đề bài
Cho tam giác ABC có AB=6,AC=8,ˆA=1000. Tính độ dài cạnh BC và bán kính R của đường tròn ngoại tiếp tam giác (làm tròn kết quả đến hàng phần mười)
Phương pháp giải - Xem chi tiết
Bước 1: Sử dụng định lí cosin để tính độ dài BC
Bước 2: Sử dụng định lí sin để tính bán kính R
Lời giải chi tiết
Áp dụng định lí cosin cho ∆ ABC ta có: BC2=AB2+AC2−2.AB.AC.cosA
⇒BC=√AB2+AC2−2.AB.AC.cosA=√62+82−2.6.8.cos1000≈10,8
Áp dụng định lí sin cho ∆ ABC ta có: BCsinA=2R⇒R=BC2sinA=10,82.sin1000≈5,5
Cùng chủ đề:
Giải bài 5 trang 75 SBT toán 10 - Cánh diều