Giải bài 6. 34 trang 20 sách bài tập toán 9 - Kết nối tri thức tập 2 — Không quảng cáo

SBT Toán 9 - Giải SBT Toán 9 - Kết nối tri thức với cuộc sống Bài tập cuối chương VI - SBT Toán 9 KNTT


Giải bài 6.34 trang 20 sách bài tập toán 9 - Kết nối tri thức tập 2

Cho phương trình: (left( {m + 1} right){x^2} - 3x + 1 = 0). a) Giải phương trình với (m = 1). b) Tìm điều kiện của m để phương trình đã cho là phương trình bậc hai. c) Tìm điều kiện của m để phương trình đã cho: - Có hai nghiệm phân biệt; - Có nghiệm kép; - Vô nghiệm.

Đề bài

Cho phương trình: \(\left( {m + 1} \right){x^2} - 3x + 1 = 0\).

a) Giải phương trình với \(m = 1\).

b) Tìm điều kiện của m để phương trình đã cho là phương trình bậc hai.

c) Tìm điều kiện của m để phương trình đã cho:

- Có hai nghiệm phân biệt;

- Có nghiệm kép;

- Vô nghiệm.

Phương pháp giải - Xem chi tiết

a) Thay \(m = 1\) vào phương trình \(\left( {m + 1} \right){x^2} - 3x + 1 = 0\), từ đó thu được phương trình ẩn x, giải phương trình đó ta thu được nghiệm của phương trình.

b) Phương trình \(a{x^2} + bx + c = 0\left( {a \ne 0} \right)\) là phương trình bậc hai một ẩn.

c) Xét phương trình bậc hai một ẩn \(a{x^2} + bx + c = 0\left( {a \ne 0} \right)\). Tính biệt thức \(\Delta  = {b^2} - 4ac\).

+ Nếu \(\Delta  > 0\) thì phương trình có hai nghiệm phân biệt: \({x_1} = \frac{{ - b + \sqrt \Delta  }}{{2a}};{x_2} = \frac{{ - b - \sqrt \Delta  }}{{2a}}\).

+ Nếu \(\Delta  = 0\) thì phương trình có nghiệm kép: \({x_1} = {x_2} = \frac{{ - b}}{{2a}}\).

+ Nếu \(\Delta  < 0\) thì phương trình vô nghiệm.

Lời giải chi tiết

\(\left( {m + 1} \right){x^2} - 3x + 1 = 0\) (1)

a) Với \(m = 1\) vào phương trình (1) ta có: \(\left( {1 + 1} \right){x^2} - 3x + 1 = 0\), suy ra \(2{x^2} - 3x + 1 = 0\).

Vì \(2 - 3 + 1 = 0\) nên phương trình có hai nghiệm \({x_1} = 1;{x_2} = \frac{1}{2}\).

b) Để phương trình (1) là phương trình bậc hai thì \(m + 1 \ne 0\), suy ra \(m \ne  - 1\).

c) Với \(m =  - 1\) phương trình (1) trở thành: \( - 3x + 1 = 0\), suy ra \(x = \frac{1}{3}\).

Với \(m \ne  - 1\):

Ta có: \(\Delta  = {\left( { - 3} \right)^2} - 4.1.\left( {m + 1} \right) = 5 - 4m\)

Phương trình (1) có hai nghiệm phân biệt khi \(\Delta  > 0\), suy ra \(5 - 4m > 0\), suy ra \(m < \frac{5}{4}\).

Phương trình (1) có nghiệm kép khi \(\Delta  = 0\), suy ra \(5 - 4m = 0\), suy ra \(m = \frac{5}{4}\).

Phương trình (1) vô nghiệm khi \(\Delta  < 0\), suy ra \(5 - 4m < 0\), suy ra \(m > \frac{5}{4}\).

Vậy với \(m < \frac{5}{4}\), \(m \ne  - 1\) thì phương trình đã cho có hai nghiệm phân biệt, với \(m = \frac{5}{4}\) thì phương trình đã cho có nghiệm kép, với \(m > \frac{5}{4}\) thì phương trình đã cho có vô nghiệm.


Cùng chủ đề:

Giải bài 6. 29 trang 17 sách bài tập toán 9 - Kết nối tri thức tập 2
Giải bài 6. 30 trang 17, 18 sách bài tập toán 9 - Kết nối tri thức tập 2
Giải bài 6. 31 trang 18 sách bài tập toán 9 - Kết nối tri thức tập 2
Giải bài 6. 32 trang 18 sách bài tập toán 9 - Kết nối tri thức tập 2
Giải bài 6. 33 trang 20 sách bài tập toán 9 - Kết nối tri thức tập 2
Giải bài 6. 34 trang 20 sách bài tập toán 9 - Kết nối tri thức tập 2
Giải bài 6. 35 trang 20 sách bài tập toán 9 - Kết nối tri thức tập 2
Giải bài 6. 36 trang 20 sách bài tập toán 9 - Kết nối tri thức tập 2
Giải bài 6. 37 trang 20 sách bài tập toán 9 - Kết nối tri thức tập 2
Giải bài 6. 38 trang 21 sách bài tập toán 9 - Kết nối tri thức tập 2
Giải bài 6. 39 trang 21 sách bài tập toán 9 - Kết nối tri thức tập 2