Giải bài 6 trang 32 SGK Toán 10 tập 2 – Chân trời sáng tạo — Không quảng cáo

Toán 10, giải toán lớp 10 chân trời sáng tạo Bài 2. Hoán vị, chỉnh hợp và tổ hợp Toán 10 Chân trời s


Giải bài 6 trang 32 SGK Toán 10 tập 2 – Chân trời sáng tạo

Có 4 đường thẳng song song cắt 5 đường thẳng song song khác tạo thành những hình bình hành (như hình 10). Có bao nhiêu hình bình hành được tạo thành?

Đề bài

Có 4 đường thẳng song song cắt 5 đường thẳng song song khác tạo thành những hình bình hành (như hình 10). Có bao nhiêu hình bình hành được tạo thành?

Phương pháp giải - Xem chi tiết

Bước 1: Chọn 2 đường thẳng song song trong 4 đường nằm ngang

Bước 2: Chọn 2 đường thẳng song song từ 5 đường xiên

Bước 3: Áp dụng quy tắc nhân

Lời giải chi tiết

Ta thấy rằng, cứ 2 đường thẳng song song cắt 2 đường thẳng song song khác thì tạo thành một hình bình hành

Do đó, hình bình hành tạo thành được xác định qua 2 công đoạn

Công đoạn 1: Chọn 2 đường thẳng  trong 4 đường nằm ngang, có:

\(C_4^2 = \frac{{4!}}{{2!.2!}} = 6\)

Công đoạn 2: Chọn 2 đường thẳng trong 5 đường xiên, có: \(C_4^2 = \frac{{5!}}{{2!.3!}} = 10\)

Vậy số hình bình hành được tạo thành là: \(6.10 = 60\) (hình bình hành)


Cùng chủ đề:

Giải bài 6 trang 10 SGK Toán 10 tập 2 – Chân trời sáng tạo
Giải bài 6 trang 15 SGK Toán 10 tập 1 – Chân trời sáng tạo
Giải bài 6 trang 18 SGK Toán 10 tập 2 – Chân trời sáng tạo
Giải bài 6 trang 25 SGK Toán 10 tập 1 – Chân trời sáng tạo
Giải bài 6 trang 27 SGK Toán 10 tập 1 – Chân trời sáng tạo
Giải bài 6 trang 32 SGK Toán 10 tập 2 – Chân trời sáng tạo
Giải bài 6 trang 36 SGK Toán 10 tập 2 – Chân trời sáng tạo
Giải bài 6 trang 39 SGK Toán 10 tập 1 – Chân trời sáng tạo
Giải bài 6 trang 45 SGK Toán 10 tập 2 – Chân trời sáng tạo
Giải bài 6 trang 48 SGK Toán 10 tập 1 – Chân trời sáng tạo
Giải bài 6 trang 56 SGK Toán 10 tập 1 – Chân trời sáng tạo