Giải bài 6 trang 37 SGK Đại số và Giải tích 11 — Không quảng cáo

Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học Bài 3. Một số phương trình lượng giác thường gặp


Giải bài 6 trang 37 SGK Đại số và Giải tích 11

Giải các phương trình sau.

Giải các phương trình sau:

LG a

\(\tan (2x + 1)\tan (3x - 1) = 1\)

Phương pháp giải:

+) Tìm ĐKXĐ.

+) Sử dụng công thức \({1 \over {\tan x}} = \cot x = \tan \left( {{\pi  \over 2} - x} \right)\)

+) Đưa phương trình về dạng phương trình lượng giác cơ bản của tan: \(\tan x = \tan \alpha  \Leftrightarrow x = \alpha  + k\pi \,\,\left( {k \in Z} \right)\)

Lời giải chi tiết:

\(a)\,\,\tan \left( {2x + 1} \right)\tan \left( {3x - 1} \right) = 1\)

ĐK: \(\left\{ \matrix{  \cos \left( {2x + 1} \right) \ne 0 \hfill \cr   \cos \left( {3x - 1} \right) \ne 0 \hfill \cr}  \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l} 2x + 1 \ne \frac{\pi }{2} + k\pi \\ 3x - 1 \ne \frac{\pi }{2} + k\pi \end{array} \right. \) \(\Leftrightarrow \left\{ \begin{array}{l} 2x \ne \frac{\pi }{2} - 1 + k\pi \\ 3x \ne \frac{\pi }{2} + 1 + k\pi \end{array} \right.  \) \( \Leftrightarrow \left\{ \begin{array}{l} x \ne \frac{\pi }{4} - \frac{1}{2} + \frac{{k\pi }}{2}\\ x \ne \frac{\pi }{6} + \frac{1}{3} + \frac{{k\pi }}{3} \end{array} \right.\)

\(\eqalign{  & pt \Leftrightarrow \tan \left( {2x + 1} \right) = {1 \over {\tan \left( {3x - 1} \right)}} \cr   &  \Leftrightarrow \tan \left( {2x + 1} \right) = \cot \left( {3x - 1} \right)\cr & \Leftrightarrow \tan \left( {2x + 1} \right) = \tan \left( {{\pi  \over 2} - 3x + 1} \right)  \cr   &  \Leftrightarrow 2x + 1 = {\pi  \over 2} - 3x + 1 + k\pi   \cr   &  \Leftrightarrow 5x = {\pi  \over 2} + k\pi   \cr   &  \Leftrightarrow x = {\pi  \over {10}} + {{k\pi } \over 5}\,\,\left( {k \in Z} \right)\,\,\left( {tm} \right) \cr} \)

Vậy nghiệm của phương trình là \(x = {\pi  \over {10}} + {{k\pi } \over 5}\,\,\left( {k \in Z} \right)\).

LG b

\(\tan x + \tan \left( {x + {\pi  \over 4}} \right) = 1\)

Phương pháp giải:

+) Tìm ĐKXĐ.

+) Sử dụng công thức \(\tan \left( {a + b} \right) = {{\tan a + \tan b} \over {1 - \tan a\tan b}}\)

+) Đặt \(t = \tan x\), đưa phương trình về dạng phương trình bậc hai ẩn t, giải phương trình tìm nghiệm t.

+) Giải phương trình lượng giác cơ bản của tan: \(\tan x = \tan \alpha  \Leftrightarrow x = \alpha  + k\pi \,\,\left( {k \in Z} \right)\)

Lời giải chi tiết:

\(b)\,\,\tan x + \tan \left( {x + {\pi  \over 4}} \right) = 1\)

ĐK: \(\left\{ \matrix{  \cos x \ne 0 \hfill \cr   \cos \left( {x + {\pi  \over 4}} \right) \ne 0  \hfill \cr}  \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l} x \ne \frac{\pi }{2} + k\pi \\ x + \frac{\pi }{4} \ne \frac{\pi }{2} + k\pi \end{array} \right. \) \(\Leftrightarrow \left\{ \begin{array}{l} x \ne \frac{\pi }{2} + k\pi \\ x \ne \frac{\pi }{4} + k\pi \end{array} \right.\)

Khi đó,

\(PT \Leftrightarrow \tan x + \frac{{\tan x + \tan \frac{\pi }{4}}}{{1 - \tan x\tan \frac{\pi }{4}}} = 1\)

\(\eqalign{  & \Leftrightarrow \tan x + {{\tan x + 1} \over {1 - \tan x}} = 1  \cr   &  \Leftrightarrow \tan x - {\tan ^2}x + \tan x + 1 = 1 - \tan x  \cr   &  \Leftrightarrow {\tan ^2}x - 3\tan x = 0  \cr   &  \Leftrightarrow \tan x\left( {\tan x - 3} \right) = 0  \cr   &  \Leftrightarrow \left[ \matrix{  \tan x = 0 \hfill \cr   \tan x = 3 \hfill \cr}  \right.  \cr   &  \Leftrightarrow \left[ \matrix{  x = k\pi  \hfill \cr   x = \arctan 3 + k\pi  \hfill \cr}  \right.\,\,\,\left( {k \in Z} \right)  (tm) \cr} \)

Vậy nghiệm của phương trình là \(x = k\pi \) hoặc \(x = \arctan 3 + k\pi \,\,\left( {k \in Z} \right)\).


Cùng chủ đề:

Chương ii: Đường thẳng và mặt phẳng trong không gian. Quan hệ song song
Chương iii: Dãy số. Cấp số cộng và cấp số nhân
Chương iii: Vectơ trong không gian. Quan hệ vuông góc
Chương iv. Giới hạn
Chương v. Đạo hàm
Giải bài 6 trang 37 SGK Đại số và Giải tích 11
Giải bài 8 trang 18 SGK Đại số và Giải tích 11
Giải bài tập Hình học 11 nâng cao có lời giải chi tiết
Giải bài tập Đại số và Giải tích 11 nâng cao có lời giải chi tiết
Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học
Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học