Giải bài 7 trang 10 vở thực hành Toán 8 — Không quảng cáo

Giải vth Toán 8, soạn vở thực hành Toán 8 KNTT Bài 2. Đa thức trang 8, 9, 10 Vở thực hành Toán 8


Giải bài 7 trang 10 vở thực hành Toán 8

Cho đa thức \(P = 8{x^2}{y^2}z - 2xyz + 5{y^2}z - 5{x^2}{y^2}z + {x^2}{y^2} - 3{x^2}{y^2}z\) .

Đề bài

Cho đa thức \(P = 8{x^2}{y^2}z - 2xyz + 5{y^2}z - 5{x^2}{y^2}z + {x^2}{y^2} - 3{x^2}{y^2}z\) .

a) Thu gọn và tìm bậc của đa thức P;

b) Tính giá trị của đa thức P tại \(x = - 4;y = 2\) \(z = 1\) .

Phương pháp giải - Xem chi tiết

a) Sử dụng quy tắc cộng (trừ) các đơn thức đồng dạng để thu gọn đa thức.

Sử dụng khái niệm bậc của đa thức: Bậc của đơn thức là tổng số mũ của các biến trong một đơn thức thu gọn.

b) Thay giá trị x, y vào đa thức để tính giá trị của đa thức.

Lời giải chi tiết

a) Thu gọn:

\(\begin{array}{l}P = 8{x^2}{y^2}z - 2xyz + 5{y^2}z - 5{x^2}{y^2}z + {x^2}{y^2} - 3{x^2}{y^2}z\\ = (8{x^2}{y^2}z - 5{x^2}{y^2}z - 3{x^2}{y^2}z) - 2xyz + 5{y^2}z + {x^2}{y^2}\\ = - 2xyz + 5{y^2}z + {x^2}{y^2}\end{array}\)

Hạng tử có bậc cao nhất là \({x^2}{y^2}\) , bậc 4.

Vậy bậc của đa thức P là 4.

b) Tính giá trị: Tại \(x = - 4;y = 2\) \(z = 1\) ta có

\(\begin{array}{l}P = - 2.( - 4).2.1 + {5.2^2}.1 + {( - 4)^2}{2^2}\\ = 16 + 20 + 64\\ = 100\end{array}\)


Cùng chủ đề:

Giải bài 6 trang 115 vở thực hành Toán 8 tập 2
Giải bài 6 trang 118 vở thực hành Toán 8 tập 2
Giải bài 6 trang 124 vở thực hành Toán 8 tập 2
Giải bài 7 trang 7 vở thực hành Toán 8
Giải bài 7 trang 7 vở thực hành Toán 8 tập 2
Giải bài 7 trang 10 vở thực hành Toán 8
Giải bài 7 trang 10 vở thực hành Toán 8 tập 2
Giải bài 7 trang 16 vở thực hành Toán 8
Giải bài 7 trang 17 vở thực hành Toán 8 tập 2
Giải bài 7 trang 18 vở thực hành Toán 8
Giải bài 7 trang 20 vở thực hành Toán 8 tập 2