Giải bài 8 trang 45 SGK Toán 10 tập 2 – Chân trời sáng tạo
a) Tìm tọa độ điểm D nằm trên trục Ox sao cho DA=DB b) Tính chu vi tam giác OAB c) Chứng minh rằng OA vuông góc AB và từ đó tính diện tích tam giác OAB
Đề bài
Cho hai điểm \(A\left( {1;3} \right),B\left( {4;2} \right)\)
a) Tìm tọa độ điểm D nằm trên trục Ox sao cho DA=DB
b) Tính chu vi tam giác OAB
c) Chứng minh rằng OA vuông góc AB và từ đó tính diện tích tam giác OAB
Lời giải chi tiết
a) Gọi tọa độ điểm D là \((x;0)\)
Ta có: \(\overrightarrow {DB} = \left( {4 - x;2} \right) \Rightarrow DB = \left| {\overrightarrow {DB} } \right| = \sqrt {{{\left( {4 - x} \right)}^2} + {2^2}} \)
\(\begin{array}{l}DA = DB \Leftrightarrow \sqrt {{{\left( {1 - x} \right)}^2} + {3^2}} = \sqrt {{{\left( {4 - x} \right)}^2} + {2^2}} \\ \Rightarrow {\left( {1 - x} \right)^2} + {3^2} = {\left( {4 - x} \right)^2} + {2^2}\\ \Rightarrow x^2 -2x+10 = x^2 -8x+ 20\\ \Rightarrow 6x = 10\\ \Rightarrow x = \frac{5}{3}\end{array}\)
Thay \(x = \frac{5}{3}\) ta thấy thảo mãn phương trình
Vậy khi \(D\left( {\frac{5}{3};0} \right)\) thì DA=DB
b) Ta có: \(\overrightarrow {OA} = \left( {1;3} \right) \Rightarrow OA = \left| {\overrightarrow {OA} } \right| = \sqrt {{1^2} + {3^2}} = \sqrt {10} \)
\(\overrightarrow {OB} = \left( {4;2} \right) \Rightarrow OB = \left| {\overrightarrow {OB} } \right| = \sqrt {{4^2} + {2^2}} = 2\sqrt 5 \)
\(\overrightarrow {AB} = \left( {3; - 1} \right) \Rightarrow AB = \left| {\overrightarrow {AB} } \right| = \sqrt {{3^2} + {{\left( { - 1} \right)}^2}} = \sqrt {10} \)
Chu vi tam giác OAB là
\({C_{OAB}} = OA + OB + AB = \sqrt {10} + 2\sqrt 5 + \sqrt {10} = 2\sqrt {10} + 2\sqrt 5 \)
c) \(\overrightarrow {OA} .\overrightarrow {AB} = 1.3 + 3.( - 1) = 0 \Rightarrow OA \bot AB\)
Tam giác OAB vuông tại A nên diện tích của tam giác là
\({S_{OAB}} = \frac{1}{2}OA.AB = \frac{1}{2}\sqrt {10} .\sqrt {10} = 5\)