Giải Bài 9.15 trang 55 sách bài tập toán 7 - Kết nối tri thức với cuộc sống
Gọi M là trung điểm của cạnh BC của tam giác ABC và D là điểm sao cho M là trung điểm của AD. Đường thẳng qua D và trung điểm của AB cắt BC tại U, đường thẳng qua D và trung điểm của AC cắt BC tại V. Chứng minh BU = UV = VC.
Đề bài
Gọi M là trung điểm của cạnh BC của tam giác ABC và D là điểm sao cho M là trung điểm của AD. Đường thẳng qua D và trung điểm của AB cắt BC tại U, đường thẳng qua D và trung điểm của AC cắt BC tại V. Chứng minh BU = UV = VC.
Phương pháp giải - Xem chi tiết
-Chứng minh: U là trọng tâm tam giác ABD.
-Chứng minh: V là trọng tâm tam giác ACD
-MB = MC
Lời giải chi tiết
-Xét tam giác ABD có:
M là trung điểm của AD, DU đi qua trung điểm AB
=>BM và DU là 2 đường trung tuyến của tam giác
Mà BM cắt DU tại U
=>U là trọng tâm tam giác ABD.
⇒BU=2UM=23BM(1)
-Xét tam giác ACD:
M là trung điểm của AD, DV đi qua trung điểm AC
=>CM và DV là 2 đường trung tuyến của tam giác
Mà CM cắt DV tại V
=>V là trọng tâm tam giác ACD.
⇒CV=2MV=23MC(2)
Mà M là trung điểm BC
⇒MB=MC
Lại có: UV = UM + MV = 13BM+13CM=13BM+13BM=23BM (3)
Từ (1), (2) và (3) suy ra:
BU = UV = VC.