Giải bài tập 1. 41 trang 47 SGK Toán 12 tập 1 - Cùng khám phá — Không quảng cáo

Toán 12 Cùng khám phá


Giải bài tập 1.41 trang 47 SGK Toán 12 tập 1 - Cùng khám phá

Hàm số \(y = \frac{{{x^3}}}{3} - 3{x^2} + 5x - 2\) nghịch biến trên khoảng nào dưới đây? A. \((5; + \infty )\). B. \(( - \infty ;1)\). C. \(( - 2;3)\). D. \((1;5)\).

Đề bài

Hàm số \(y = \frac{{{x^3}}}{3} - 3{x^2} + 5x - 2\) nghịch biến trên khoảng nào dưới đây?

A. \((5; + \infty )\).

B. \(( - \infty ;1)\).

C. \(( - 2;3)\).

D. \((1;5)\).

Phương pháp giải - Xem chi tiết

- Tìm đạo hàm của hàm số.

- Giải phương trình đạo hàm bằng 0 để tìm cực trị

- Xét chiều biến thiên của đồ thị hàm số bằng các chọn một giá trị x bất kỳ nằm trong khoảng đó.

Lời giải chi tiết

Đạo hàm của hàm số: \(y' = {x^2} - 6x + 5\)

Đặt \(y' = 0\), ta có: \({x^2} - 6x + 5 = 0 \Leftrightarrow \{ _{x = 5}^{x = 1}\)

Chọn \(x = 3 \in (1;5)\), ta được: \(y'(3) = {3^2} - 6.3 + 5 =  - 4 < 0\)

Vì giá trị âm nên khoảng (1;5) nghịch biến → Chọn D.


Cùng chủ đề:

Giải bài tập 1. 36 trang 46 SGK Toán 12 tập 1 - Cùng khám phá
Giải bài tập 1. 37 trang 46 SGK Toán 12 tập 1 - Cùng khám phá
Giải bài tập 1. 38 trang 46 SGK Toán 12 tập 1 - Cùng khám phá
Giải bài tập 1. 39 trang 47 SGK Toán 12 tập 1 - Cùng khám phá
Giải bài tập 1. 40 trang 47 SGK Toán 12 tập 1 - Cùng khám phá
Giải bài tập 1. 41 trang 47 SGK Toán 12 tập 1 - Cùng khám phá
Giải bài tập 1. 42 trang 48 SGK Toán 12 tập 1 - Cùng khám phá
Giải bài tập 1. 43 trang 48 SGK Toán 12 tập 1 - Cùng khám phá
Giải bài tập 1. 44 trang 48 SGK Toán 12 tập 1 - Cùng khám phá
Giải bài tập 1. 45 trang 48 SGK Toán 12 tập 1 - Cùng khám phá
Giải bài tập 1. 46 trang 49 SGK Toán 12 tập 1 - Cùng khám phá