Giải bài tập 2.26 trang 82 SGK Toán 12 tập 1 - Cùng khám phá
Trong không gian Oxyz, cho bốn điểm A(1; 0; 0), B(0; 1; 0), C(0; 0; 1), D(2; -1; 1). Tính góc giữa hai vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {CD} \).
Đề bài
Trong không gian Oxyz, cho bốn điểm A(1; 0; 0), B(0; 1; 0), C(0; 0; 1), D(2; -1; 1). Tính góc giữa hai vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {CD} \).
Phương pháp giải - Xem chi tiết
Tính tích vô hướng giữa hai vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {CD} \), sau đó sử dụng công thức:
\(\cos \theta = \frac{{\overrightarrow {AB} \cdot \overrightarrow {CD} }}{{\left| {\overrightarrow {AB} } \right| \cdot \left| {\overrightarrow {CD} } \right|}}\)
Lời giải chi tiết
Tính vectơ:
\(\overrightarrow {AB} = ( - 1;1;0),\quad \overrightarrow {CD} = (2; - 1;0)\)
Tích vô hướng:
\(\overrightarrow {AB} \cdot \overrightarrow {CD} = - 1 \cdot 2 + 1 \cdot ( - 1) = - 2 - 1 = - 3\)
Độ dài của các vectơ:
\(\left| {\overrightarrow {AB} } \right| = \sqrt {{{( - 1)}^2} + {1^2} + {0^2}} = \sqrt 2 ,\quad \left| {\overrightarrow {CD} } \right| = \sqrt {{2^2} + {{( - 1)}^2} + {0^2}} = \sqrt 5 \)
Góc giữa hai vectơ:
\(\cos \theta = \frac{{ - 3}}{{\sqrt 2 \cdot \sqrt 5 }} = \frac{{ - 3}}{{\sqrt {10} }}\quad \Rightarrow \quad \theta = {\cos ^{ - 1}}\left( {\frac{{ - 3}}{{\sqrt {10} }}} \right)\)