Giải bài tập 2 trang 95 SGK Toán 12 tập 2 - Cánh diều
Cho hai biến cố A, B với \(P\left( A \right) = 0,6,P\left( B \right) = 0,8,P\left( {A \cap B} \right) = 0,4\). Tính các xác suất sau: a) \(P\left( {B|A} \right),P\left( {\overline B |A} \right)\). b) \(P\left( {A \cap \overline B } \right)\).
Đề bài
Cho hai biến cố A, B với \(P\left( A \right) = 0,6,P\left( B \right) = 0,8,P\left( {A \cap B} \right) = 0,4\). Tính các xác suất sau:
a) \(P\left( {B|A} \right),P\left( {\overline B |A} \right)\).
b) \(P\left( {A \cap \overline B } \right)\).
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về định nghĩa xác suất có điều kiện để tính: Cho hai biến cố A và B. Xác suất của biến cố A với điều kiện biến cố B đã xảy ra được gọi là xác suất của A với điều kiện B, kí hiệu là P(A|B). Nếu \(P\left( B \right) > 0\) thì \(P\left( {A|B} \right) = \frac{{P\left( {A \cap B} \right)}}{{P\left( B \right)}}\).
Lời giải chi tiết
a) \(P\left( {B|A} \right) = \frac{{P\left( {A \cap B} \right)}}{{P\left( A \right)}} = \frac{{0,4}}{{0,6}} = \frac{2}{3}\), \(P\left( {\overline B |A} \right) = 1 - P\left( {B|A} \right) = 1 - \frac{2}{3} = \frac{1}{3}\).
b) \(P\left( {A \cap \overline B } \right) = P\left( A \right).P\left( {\overline B |A} \right) = 0,6.\frac{1}{3} = 0,2\) .