Giải bài tập 2 trang 88 SGK Toán 12 tập 1 - Cánh diều
Bảng 9 biểu diễn mẫu số liệu ghép nhóm thống kê mức lương của 1 công ty (đơn vị: triệu đồng) a) Tính khoảng biến thiên của mẫu số liệu ghép nhóm đó b) Tính khoảng tứ phân vị của mẫu số liệu ghép nhóm đó
Đề bài
Bảng 9 biểu diễn mẫu số liệu ghép nhóm thống kê mức lương của 1 công ty (đơn vị: triệu đồng)
a) Tính khoảng biến thiên của mẫu số liệu ghép nhóm đó
b) Tính khoảng tứ phân vị của mẫu số liệu ghép nhóm đó
Phương pháp giải - Xem chi tiết
a) Khoảng biến thiên là hiệu của đầu mút phải nhóm cuối cùng và đầu mút trái nhóm đầu tiên
b) Khoảng tứ phân vị là \({Q_3} - {Q_1}\)
Lời giải chi tiết
a) Khoảng biến thiên của mẫu số liệu ghép nhóm trên là: \(R = 40 - 10 = 30\)
b) Số phần tử của mẫu là n = 60
Tần số tích lũy của các nhóm lần lượt là \(c{f_1} = 15\), \(c{f_2} = 33\), \(c{f_3} = 43\), \(c{f_4} = 53\), \(c{f_5} = 58\), \(c{f_6} = 60\)
Ta có: \(\frac{n}{4} = \frac{{60}}{4} = 15\) suy ra nhóm 1 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bẳng 15. Xét nhóm 1 là nhóm [10;15] có s = 10, h = 5, \({n_1} = 15\)
Ta có tứ phân vị thứ nhất là: \({Q_1} = s + \left( {\frac{{15 - c{f_0}}}{{{n_1}}}} \right).h = 10 + \left( {\frac{{15 - 0}}{{15}}} \right).5 = 15\)
Ta có: \(\frac{{3n}}{4} = \frac{{3.60}}{4} = 45\) mà 43 < 45 < 53 suy ra nhóm 4 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bẳng 45. Xét nhóm 4 là nhóm [25;30] có t = 25, l = 5, \({n_4} = 10\)và nhóm 3 là nhóm [20;25] có \(c{f_3} = 43\)
Ta có tứ phân vị thứ ba là: \({Q_3} = t + \left( {\frac{{45 - c{f_3}}}{{{n_4}}}} \right).l = 25 + \left( {\frac{{45 - 43}}{{10}}} \right).5 = 26\)
Khoảng tứ phân vị của mẫu số liệu ghép nhóm trên là: \({Q_3} - {Q_1} = 26 - 15 = 9\)