Giải bài tập 6. 36 trang 29 SGK Toán 9 tập 2 - Kết nối tri thức — Không quảng cáo

Toán 9 kết nối tri thức


Giải bài tập 6.36 trang 29 SGK Toán 9 tập 2 - Kết nối tri thức

Tìm hai số u và v, biết: a) (u + v = 15,uv = 56); b) ({u^2} + {v^2} = 125,uv = 22).

Đề bài

Tìm hai số u và v, biết:

a) \(u + v = 15,uv = 56\);

b) \({u^2} + {v^2} = 125,uv = 22\).

Phương pháp giải - Xem chi tiết

+ Hai u và v là nghiệm của phương trình \({x^2} - Sx + P = 0\) (điều kiện \({S^2} - 4P \ge 0\)).

+ Tính nghiệm của phương trình dựa vào công thức nghiệm (hoặc công thức nghiệm thu gọn).

Lời giải chi tiết

a) Hai số u và v là nghiệm của phương trình \({x^2} - 15x + 56 = 0\)

Ta có: \(\Delta  = {\left( { - 15} \right)^2} - 4.56 = 1 > 0\)

Suy ra phương trình có hai nghiệm phân biệt: \({x_1} = \frac{{15 + 1}}{2} = 8;{x_2} = \frac{{15 - 1}}{2} = 7\).

Vậy \(u = 8;v = 7\) hoặc \(u = 7;v = 8\).

b) Ta có: \({u^2} + {v^2} = 125 \Rightarrow {\left( {u + v} \right)^2} - 2uv = 125 \Rightarrow {\left( {u + v} \right)^2} = 125 + 2.22 = 169\)

Do đó, \(u + v = 13\) hoặc \(u + v =  - 13\).

Trường hợp 1: \(u + v = 13\):

Hai số u và v là nghiệm của phương trình \({x^2} - 13x + 22 = 0\)

Ta có: \(\Delta  = {\left( { - 13} \right)^2} - 4.22 =  81 > 0\).

Suy ra phương trình có hai nghiệm phân biệt \(x_1 = \frac{13 +\sqrt{81}}{2} = 11\) và \(x_2 = \frac{13 - \sqrt{81}}{2} = 2\)

Trường hợp 2: \(u + v =  - 13\):

Hai số u và v là nghiệm của phương trình \({x^2} + 13x + 22 = 0\)

Ta có: \(\Delta  = {13^2} - 4.22 =  81 > 0\).

Suy ra phương trình có hai nghiệm phân biệt \(x_1 = \frac{-13 +\sqrt{81}}{2} = -2\) và \(x_2 = \frac{-13 - \sqrt{81}}{2} = -11\)

Vậy \((u,v) \in \left\{ (-2; -11); (-11;-2); (2; 11); (11;2) \right\} \) thỏa mãn \({u^2} + {v^2} = 125,uv = 22\).


Cùng chủ đề:

Giải bài tập 6. 31 trang 27 SGK Toán 9 tập 2 - Kết nối tri thức
Giải bài tập 6. 32 trang 27 SGK Toán 9 tập 2 - Kết nối tri thức
Giải bài tập 6. 33 trang 27 SGK Toán 9 tập 2 - Kết nối tri thức
Giải bài tập 6. 34 trang 29 SGK Toán 9 tập 2 - Kết nối tri thức
Giải bài tập 6. 35 trang 29 SGK Toán 9 tập 2 - Kết nối tri thức
Giải bài tập 6. 36 trang 29 SGK Toán 9 tập 2 - Kết nối tri thức
Giải bài tập 6. 37 trang 29 SGK Toán 9 tập 2 - Kết nối tri thức
Giải bài tập 6. 38 trang 29 SGK Toán 9 tập 2 - Kết nối tri thức
Giải bài tập 6. 39 trang 30 SGK Toán 9 tập 2 - Kết nối tri thức
Giải bài tập 6. 40 trang 30 SGK Toán 9 tập 2 - Kết nối tri thức
Giải bài tập 6. 41 trang 30 SGK Toán 9 tập 2 - Kết nối tri thức