Giải câu hỏi trắc nghiệm trang 29, 30 vở thực hành Toán 8
Chọn phương án đúng trong mỗi câu sau:
Chọn phương án đúng trong mỗi câu sau:
Câu 1 trang 29
Khai triển \({\left( {2x + 1} \right)^3}\) được biểu thức:
A. \(8{x^3}\; + 12{x^2}\; + 6x + 1\).
B. \(8{x^3}\; + 6{x^2}\; + 12x + 1\).
C. \(8{x^3}\;-12{x^2}\; + 6x-1\).
D. \(8{x^3}\;-6{x^2}\; + 12x-1\).
Phương pháp giải:
Sử dụng hằng đẳng thức lập phương của một tổng: \({(a + b)^3} = {a^3} + 3{a^2}b + 3a{b^2} + {b^3}\)
Lời giải chi tiết:
Ta có \({\left( {2x + 1} \right)^3}\; = 8{x^3}\; + 12{x^2}\; + 6x + 1\).
=> Chọn đáp án A.
Câu 2 trang 30
Khai triển (2x – 1) 3 được biểu thức:
A. 8x 3 + 12x 2 + 6x + 1.
B. 8x 3 + 6x 2 + 12x + 1.
C. 8x 3 – 12x 2 + 6x – 1.
D. 8x 3 – 6x 2 + 12x – 1.
Phương pháp giải:
Sử dụng hằng đẳng thức lập phương của một hiệu: \({(a - b)^3} = {a^3} - 3{a^2}b + 3a{b^2} - {b^3}\)
Lời giải chi tiết:
Ta có \({\left( {2x-1} \right)^3}\; = 8{x^3}\;-12{x^2}\; + 6x-1\).
=> Chọn đáp án C.
Câu 3 trang 27
Biểu thức \({\left( {x + 2} \right)^3}\;-{\left( {x-2} \right)^3}\) được rút gọn thành
A. 16.
B. 12x 2 + 16.
C. −16.
D. 24x + 16.
Phương pháp giải:
- Sử dụng hằng đẳng thức lập phương của một tổng: \({(a + b)^3} = {a^3} + 3{a^2}b + 3a{b^2} + {b^3}\)
- Sử dụng hằng đẳng thức lập phương của một hiệu: \({(a - b)^3} = {a^3} - 3{a^2}b + 3a{b^2} - {b^3}\)
Lời giải chi tiết:
\(\begin{array}{*{20}{l}}{{{\left( {x + 2} \right)}^3}\;-{{\left( {x-2} \right)}^3}}\\{ = {x^3}\; + 6{x^2}\; + 12x + 8-\left( {{x^3}\;-6{x^2}\; + 12x-8} \right)}\\{ = {x^3}\; + 6{x^2}\; + 12x + 8-{x^3}\; + 6{x^2}\;-12x + 8}\\{ = \left( {{x^3}\;-{x^3}} \right) + \left( {6{x^2}\; + 6{x^2}} \right) + \left( {12x-12x} \right) + \left( {8 + 8} \right)}\\{ = 12{x^2}\; + 16.}\end{array}\)
=> Chọn đáp án B.
Câu 4 trang 27
Khẳng định nào sau đây là đúng?
A. (−A + B) 2 = A 2 + 2AB + B 2 .
B. (A + B) 2 = A 2 – 2AB + B 2 .
C. (A + B) 3 = A 3 + 3A 2 B + 3AB 2 + B 3 .
D. (A – B) 3 = A 3 – 3A 2 B + 3AB 3 + B 3 .
Phương pháp giải:
Dựa vào những hằng đẳng thức đáng nhớ đã học
Lời giải chi tiết:
Khẳng định đúng là: \({\left( {A + B} \right)^3}\; = {A^3}\; + 3{A^2}B + 3A{B^2}\; + {B^{3\;}}\) (hằng đẳng thức lập phương của một tổng).
=> Chọn đáp án C.