Giải mục 1 trang 55, 56 SGK Toán 10 tập 1 - Kết nối tri thức — Không quảng cáo

Toán 10, giải toán lớp 10 kết nối tri thức với cuộc sống Bài 9. Tích của một vecto với một số Toán 10 Kết nối tr


Giải mục 1 trang 55, 56 SGK Toán 10 tập 1 - Kết nối tri thức

1a và a có bằng nhau hay không? Trên một trục số, gọi O, A, M, N tương ứng biểu thị các số 0, 1, . Hãy nêu mối quan hệ về hướng và độ dài -a và -1a có mối quan hệ gì? Cho đường thẳng d đi qua hai điểm phân biệt A và B. Những khẳng định nào sau đây là đúng?

HĐ1

Cho vecto \(\overrightarrow {AB}  = \overrightarrow a \). Hãy xác định điểm C sao cho \(\overrightarrow {BC}  = \overrightarrow a \)

a) Tìm mối quan hệ giữa \(\overrightarrow {AB} \) và \(\overrightarrow a  + \overrightarrow a \)

b) Vecto \(\overrightarrow a  + \overrightarrow a \) có mối quan hệ như thế nào về hướng và độ dài đối với vecto \(\overrightarrow a \)

Phương pháp giải:

Hai vecto bằng nhau nếu chúng có cùng độ dài và cùng hướng.

Lời giải chi tiết:

Xác định điểm C:

Trên tia AB lấy điểm C sao cho BC = a và B nằm giữa A, C.

a) Vì  \(\overrightarrow {AB}  = \overrightarrow a  = \overrightarrow {BC} \) nên A, B, C thẳng hàng và B là trung điểm của AC.

Vậy \(\overrightarrow a  + \overrightarrow a \) và \(\overrightarrow {AB} \) cùng hướng, \(\left| {\overrightarrow a  + \overrightarrow a } \right| = 2.\left| {\overrightarrow {AB} } \right|\)

b) Ta có:  \(\overrightarrow a  + \overrightarrow a \) và \(\overrightarrow {AB} \) cùng hướng, \(\left| {\overrightarrow a  + \overrightarrow a } \right| = 2.\left| {\overrightarrow {AB} } \right|\)

Mà \(\overrightarrow {AB}  = \overrightarrow a \) nên:  \(\overrightarrow a  + \overrightarrow a \) và \(\overrightarrow a \) cùng hướng, \(\left| {\overrightarrow a  + \overrightarrow a } \right| = 2.\left| {\overrightarrow a } \right|\).

Câu hỏi

\(1\;\overrightarrow a \) và \(\overrightarrow a \) có bằng nhau hay không?

Phương pháp giải:

Hai vecto bằng nhau nếu chúng có cùng độ dài và cùng hướng.

Lời giải chi tiết:

Ta có: Vecto \(1\;\overrightarrow a \) cùng hướng với vecto \(\overrightarrow a \) và  \(\left| {1\;\overrightarrow a } \right| = \left| {\overrightarrow a } \right|\).

Vậy hai vecto \(1\;\overrightarrow a \) và \(\overrightarrow a \) bằng nhau.

HĐ2

Trên một trục số, gọi O, A, M, N tương ứng biểu thị các số \(0;\;1;\;\sqrt 2 ;\; - \sqrt 2 \). Hãy nêu mối quan hệ về hướng và độ dài của mỗi vecto \(\overrightarrow {OM} ,\;\overrightarrow {ON} \) với vecto \(\overrightarrow a  = \overrightarrow {OA} \). Viết đẳng thức thể hiện mối quan hệ giữa hai vecto \(\overrightarrow {OM} \) và \(\overrightarrow {OA} \).

Phương pháp giải:

Vecto \(k\;\overrightarrow a \) (với \(k > 0,\;\overrightarrow a  \ne \overrightarrow 0 \)) là vecto cùng hướng với vecto \(\overrightarrow a \) và có độ đài bằng \(k\;\left| {\overrightarrow a } \right|\).

Lời giải chi tiết:

Dễ thấy:

Vecto \(\overrightarrow {OM} \) và \(\overrightarrow {OA} \) có cùng giá nên chúng cùng phương.

Mà vecto \(\overrightarrow {OM} \) và \(\overrightarrow {OA} \) cùng nằm trên tia OM nên chúng cùng chiều.

Vậy vecto \(\overrightarrow {OM} \) và \(\overrightarrow {OA} \) cùng hướng.

Ngoài ra, \(\left| {\overrightarrow {OM} } \right| = OM = \sqrt 2 \) và \(\left| {\overrightarrow {OA} } \right| = OA = 1\)

\( \Rightarrow \left| {\overrightarrow {OM} } \right| = \sqrt 2 .\left| {\overrightarrow {OA} } \right|\)

Ta kết luận \(\overrightarrow {OM}  = \sqrt 2 .\overrightarrow {OA} \).

Dễ thấy:

Vecto \(\overrightarrow {ON} \) và \(\overrightarrow {OA} \) có cùng giá nên chúng cùng phương.

Mà vecto \(\overrightarrow {ON} \) và \(\overrightarrow {OA} \) thuộc hai tia đối nhau nên chúng ngược chiều.

Vậy vecto \(\overrightarrow {ON} \) và \(\overrightarrow {OA} \) ngược hướng.

Ngoài ra, \(\left| {\overrightarrow {ON} } \right| = ON = \sqrt 2 \) và \(\left| {\overrightarrow {OA} } \right| = OA = 1\)

\( \Rightarrow \left| {\overrightarrow {ON} } \right| = \sqrt 2 .\left| {\overrightarrow {OA} } \right|\)

Ta kết luận \(\overrightarrow {ON}  = -\sqrt 2 .\overrightarrow {OA} \).

Câu hỏi

\( - \;\overrightarrow a \) và \( - 1\;\overrightarrow a \) có mối quan hệ gì?

Phương pháp giải:

Vecto \(k\;\overrightarrow a \) (với \(k < 0,\;\overrightarrow a  \ne \overrightarrow 0 \))  là vecto ngược hướng với vecto \(\overrightarrow a \) và có độ đài bằng \(\left| k \right|\;\left| {\overrightarrow a } \right|\).

Lời giải chi tiết:

Ta có:

Vecto \( - \;\overrightarrow a \) là vecto đối của vecto \(\overrightarrow a \)

\( \Rightarrow  - \;\overrightarrow a \) ngược hướng với vecto \(\overrightarrow a \) và \(\left| { - \;\overrightarrow a \;} \right| = \left| {\;\overrightarrow a \;} \right|\)

Lại có:

Vecto  \( - 1\;\overrightarrow a \) là vecto ngược hướng với vecto \(\overrightarrow a \) và có độ đài bằng \(\left| { - 1} \right|\;\left| {\overrightarrow a } \right| = \left| {\overrightarrow a } \right|\).

\( \Rightarrow  - \;\overrightarrow a \) và \( - 1\;\overrightarrow a \) cùng hướng và có độ dài bằng nhau (bằng vecto\(\;\overrightarrow a \)).

Hay \( - \;\overrightarrow a  =  - 1\;\overrightarrow a \)

Luyện tập 1

Cho đường thẳng d đi qua hai điểm phân biệt A và B. Những khẳng định nào sau đây là đúng?

a) Điểm M thuộc đường thẳng d khi và chỉ khi tồn tại số t để \(\overrightarrow {AM}  = t.\overrightarrow {AB} \)

b) Với điểm M bất kì, ta luôn có \(\overrightarrow {AM}  = \frac{{AM}}{{AB}}.\overrightarrow {AB} \)

c) Điểm M thuộc tia đối của tia AB khi và chỉ khi tồn tại số \(t \le 0\) để \(\overrightarrow {AM}  = t.\overrightarrow {AB} \)

Phương pháp giải:

\(\overrightarrow a \) và \(\overrightarrow b \;\left( {\overrightarrow b  \ne \overrightarrow 0 } \right)\) cùng phương khi và chỉ khi tồn tại số k để \(\overrightarrow a  = k.\overrightarrow b \)

Nếu \(\overrightarrow a \) và \(\overrightarrow b \) cùng hướng thì \(k = \frac{{|\overrightarrow a |}}{{|\overrightarrow b |}}\)

Nếu \(\overrightarrow a \) và \(\overrightarrow b \) ngược hướng thì \(k =  - \frac{{|\overrightarrow a |}}{{|\overrightarrow b |}}\)

Lời giải chi tiết:

a) Điểm M thuộc đường thẳng d khi và chỉ khi hai vecto \(\overrightarrow {AM} \) và \(\overrightarrow {AB} \) cùng phương (cùng giá d)

Khi và chỉ khi tồn tại số t để \(\overrightarrow {AM}  = t.\overrightarrow {AB} \).

Vậy khẳng định a) đúng.

b) Với điểm M bất kì, ta luôn có \(\overrightarrow {AM}  = \frac{{AM}}{{AB}}.\overrightarrow {AB} \)

Sai vì \(\overrightarrow {AM}  = \frac{{AM}}{{AB}}.\overrightarrow {AB} \) khi và chỉ khi \(\overrightarrow {AM} \) và \(\overrightarrow {AB} \) cùng hướng.

c) Điểm M thuộc tia đối của tia AB, tức là A nằm giữa M và B.

Khi và chỉ khi hai vecto \(\overrightarrow {AM} \) và \(\overrightarrow {AB} \) ngược hướng khi và chỉ khi tồn tại số \(t < 0\) để \(\overrightarrow {AM}  = t.\overrightarrow {AB} \)

Vậy khẳng định c) sai.


Cùng chủ đề:

Giải mục 1 trang 38, 39 SGK Toán 10 tập 1 - Kết nối tri thức
Giải mục 1 trang 43, 44, 45 SGK Toán 10 tập 2 - Kết nối tri thức
Giải mục 1 trang 47 SGK Toán 10 tập 1 - Kết nối tri thức
Giải mục 1 trang 48, 49, 50 SGK Toán 10 tập 2 - Kết nối tri thức
Giải mục 1 trang 51, 52 SGK Toán 10 tập 1 - Kết nối tri thức
Giải mục 1 trang 55, 56 SGK Toán 10 tập 1 - Kết nối tri thức
Giải mục 1 trang 60, 61 SGK Toán 10 tập 1 - Kết nối tri thức
Giải mục 1 trang 60, 61, 62 SGK Toán 10 tập 2 - Kết nối tri thức
Giải mục 1 trang 66 SGK Toán 10 tập 1 - Kết nối tri thức
Giải mục 1 trang 66, 67 SGK Toán 10 tập 2 - Kết nối tri thức
Giải mục 1 trang 72, 73, 74 SGK Toán 10 tập 2 - Kết nối tri thức