Giải mục 2 trang 114, 115, 116, 117 SGK Toán 10 tập 1 - Chân trời sáng tạo
Bảng sau thống kê số sách mỗi bạn học sinh Tổ 1 và Tổ 2 đã đọc ở thư viện trường trong một tháng: Hãy tìm trung vị của các số liệu ở Vận dụng 1 và Vận dụng 2. Cân nặng của 20 vận động viên môn vật của một câu lạc bộ được ghi lại ở bảng sau: Hãy tìm tứ phân vị của các mẫu số liệu sau:
HĐ Khám phá 2
Bảng sau thống kê số sách mỗi bạn học sinh Tổ 1 và Tổ 2 đã đọc ở thư viện trường trong một tháng:
Tổ 1 |
3 |
1 |
2 |
1 |
2 |
2 |
3 |
25 |
1 |
Tổ 2 |
4 |
5 |
4 |
3 |
3 |
4 |
5 |
4 |
a) Trung bình mỗi bạn Tổ 1 và mỗi bạn Tổ 2 đọc bao nhiêu quyển sách ở thư viện trường trong tháng đó?
b) Em hãy thảo luận với các bạn trong nhóm xem tổ nào chăm đọc sách ở thư viện hơn.
Lời giải chi tiết:
a) Trung bình mỗi bạn Tổ 1 đọc:
3+1+2+1+2+2+3+25+19≈4,44 (quyển sách)
Trung bình mỗi bạn Tổ 2 đọc:
4+5+4+3+3+4+5+48=4 (quyển sách)
b) Sắp xếp số sách mối bạn Tổ 1 đã đọc theo thứ tự không giảm, ta được dãy:
1; 1; 1; 2; 2; 2; 3; 3; 25
Vì cỡ mẫu bằng 9 nên trung vị của Tổ 1 là số liệu thứ 5 của dãy trên, tức là Me=2.
Sắp xếp số sách mối bạn Tổ 2 đã đọc theo thứ tự không giảm, ta được dãy:
3; 3; 4; 4; 4; 4; 5; 5.
Vì cỡ mẫu bằng 8 nên trung vị của Tổ 2 là trung bình cộng của số liệu thứ 4 và thứ 5 của dãy trên, tức là Me=12(4+4)=4.
Vậy nếu so sánh theo trung vị thì các bạn Tổ 2 đọc nhiều sách ở thư viện hơn các bạn Tổ 1.
Thực hành 1
Hãy tìm trung vị của các số liệu ở Vận dụng 1 và Vận dụng 2.
Phương pháp giải:
Bước 1: Sắp xếp các số liệu theo thứ tự không giảm.
Bước 2: Tìm cỡ mẫu n.
+ Nếu n=2k−1 thì trung vị là số liệu thứ k
+ Nếu n=2k thì trung vị =12(số liệu thứ k + số liệu thứ (k+1))
Lời giải chi tiết:
Vận dụng 1:
Nhóm A |
12,2 |
13,5 |
12,7 |
13,1 |
12,5 |
12,9 |
13,2 |
12,8 |
Nhóm B |
12,1 |
13,4 |
13,2 |
12,9 |
13,7 |
Sắp xếp thời gian chạy của nhóm A theo thứ tự không giảm ta được dãy:
12,2;12,5;12,7;12,8;12,9;13,1;13,2;13,5
Vì cỡ mẫu bằng 8 nên trung vị của nhóm A là trung bình cộng của số liệu thứ 4 và thứ 5 của dãy trên, tức là Me=12(12,8+12,9)=12,85.
Sắp xếp thời gian chạy của nhóm B theo thứ tự không giảm ta được dãy:
12,1;12,9;13,2;13,4;13,7
Vì cỡ mẫu bằng 5 nên trung vị của nhóm B là số liệu thứ 3 của dãy trên, tức là Me=13,2.
Vận dụng 2:
Số bàn thắng |
0 |
1 |
2 |
3 |
4 |
6 |
Số trận |
5 |
10 |
5 |
3 |
2 |
1 |
Sắp xếp số bàn thắng của đội theo thứ tự không giảm ta được dãy:
0;0;0;0;0;1;...;1⏟10so1;2;2;2;2;2;3;3;3;4;4;6.
Vì cỡ mẫu bằng 5+10+5+3+2+1=26 nên trung vị của đội là trung bình cộng của số liệu thứ 13 và thứ 14 của dãy trên, tức là Me=12(1+1)=1.
HĐ Khám phá 3
Cân nặng của 20 vận động viên môn vật của một câu lạc bộ được ghi lại ở bảng sau:
50 |
56 |
57 |
62 |
58 |
52 |
66 |
61 |
54 |
61 |
64 |
69 |
52 |
65 |
58 |
68 |
67 |
56 |
59 |
54 |
Để thuận tiện cho việc luyện tập, ban huấn luyện muốn xếp 20 vận động viên trên thành 4 nhóm, mỗi nhóm gồm 25% số vận động viên có cân nặng gần nhau. Bạn hãy giúp ban huấn luyện xác định các ngưỡng cân nặng để phân nhóm mỗi vận động viên.
Phương pháp giải:
Bước 1: Sắp xếp các số liệu theo thứ tự không giảm.
Bước 2: Tính cỡ mẫu n, tìm tứ phân vị thứ hai Q2(chính là trung vị của mẫu).
Bước 3: Tìm tứ phân vị thứ nhất: là trung vị của nửa số liệu đã sắp xếp bên trái Q2 (không bao gồm Q2 nếu n lẻ)
Bước 4: Tìm tứ phân vị thứ ba: là trung vị của nửa số liệu đã sắp xếp bên phải Q2 (không bao gồm Q2 nếu n lẻ)
Lời giải chi tiết:
Sắp xếp các cân nặng theo thứ tự không giảm, ta được dãy:
50; 52; 52; 54; 54; 56; 56; 57; 58; 58; 59; 61; 61; 62; 64; 65; 66; 67; 68; 69.
+) Vì cỡ mẫu n=20, là số chẵn, nên giá trị tứ phân vị thứ hai là Q2=12(58+59)=58,5
+) Tứ phân vị thứ nhất là trung vị của mẫu: 50; 52; 52; 54; 54; 56; 56; 57; 58; 58.
Do đó Q1=12(54+56)=55
+) Tứ phân vị thứ nhất là trung vị của mẫu: 59; 61; 61; 62; 64; 65; 66; 67; 68; 69.
Do đó Q3=12(64+65)=64,5
Vậy 3 ngưỡng cân nặng để phân nhóm là: 55kg; 58,5 kg; 64,5 kg.
Thực hành 2
Hãy tìm tứ phân vị của các mẫu số liệu sau:
a) 10; 13; 15; 2; 10; 19; 2; 5; 7
b) 15; 19; 10; 5; 9; 10; 1; 2; 5; 15
Phương pháp giải:
Bước 1: Sắp xếp các số liệu theo thứ tự không giảm.
Bước 2: Tính cỡ mẫu n, tìm tứ phân vị thứ hai Q2(chính là trung vị của mẫu).
Bước 3: Tìm tứ phân vị thứ nhất: là trung vị của nửa số liệu đã sắp xếp bên trái Q2 (không bao gồm Q2 nếu n lẻ)
Bước 4: Tìm tứ phân vị thứ ba: là trung vị của nửa số liệu đã sắp xếp bên phải Q2 (không bao gồm Q2 nếu n lẻ)
Lời giải chi tiết:
a) Sắp xếp lại mẫu số liệu theo thứ tự không giảm, ta được:
2; 2; 5; 7; 10; 10; 13; 15; 19
+) Vì cỡ mẫu là n=9, là số lẻ, nên giá trị tứ phân vị thứ hai là Q2=10
+) Tứ phân vị thứ nhất là trung vị của mẫu: 2; 2; 5; 7.
Do đó Q1=12(2+5)=3,5
+) Tứ phân vị thứ nhất là trung vị của mẫu: 10; 13; 15; 19.
Do đó Q3=12(13+15)=14
b) Sắp xếp lại mẫu số liệu theo thứ tự không giảm, ta được:
1; 2; 5; 5; 9; 10; 10; 15; 15; 19
+) Vì cỡ mẫu là n=10, là số chẵn, nên giá trị tứ phân vị thứ hai là Q2=12(9+10)=9,5
+) Tứ phân vị thứ nhất là trung vị của mẫu: 1; 2; 5; 5; 9.
Do đó Q1=5
+) Tứ phân vị thứ nhất là trung vị của mẫu: 10; 10; 15; 15; 19.
Do đó Q3=15