Giải mục 5 trang 55 SGK Toán 9 tập 1 - Cùng khám phá — Không quảng cáo

Toán 9 cùng khám phá


Giải mục 5 trang 55 SGK Toán 9 tập 1 - Cùng khám phá

Tính và so sánh a)\(\sqrt {\frac{9}{{16}}} \) và \(\frac{{\sqrt 9 }}{{\sqrt {16} }}\); b)\(\sqrt {\frac{{25}}{4}} \)và \(\frac{{\sqrt {25} }}{{\sqrt 4 }}\);

HĐ4

Trả lời câu hỏi Hoạt động 4 trang 55 SGK Toán 9 Cùng khám phá

Tính và so sánh

a) \(\sqrt {\frac{9}{{16}}} \) và \(\frac{{\sqrt 9 }}{{\sqrt {16} }}\);

b) \(\sqrt {\frac{{25}}{4}} \) và \(\frac{{\sqrt {25} }}{{\sqrt 4 }}\);

Phương pháp giải:

Thực hiện phép chia để so sánh.

Lời giải chi tiết:

a) \(\sqrt {\frac{9}{{16}}}  = \sqrt {\frac{{{3^2}}}{{{4^2}}}}  = \frac{3}{4};\frac{{\sqrt 9 }}{{\sqrt {16} }} = \frac{{\sqrt {{3^2}} }}{{\sqrt {{4^2}} }} = \frac{3}{4}\).

Vậy \(\sqrt {\frac{9}{{16}}}  = \frac{{\sqrt 9 }}{{\sqrt {16} }}\).

b) \(\sqrt {\frac{25}{{4}}} = \sqrt {\frac{{{3^2}}}{{{4^2}}}} = \frac{3}{4};\frac{{\sqrt 25 }}{{\sqrt {4} }} = \frac{{\sqrt {{3^2}} }}{{\sqrt {{4^2}} }} = \frac{3}{4}\).

Vậy \(\sqrt {\frac{25}{{4}}} = \frac{{\sqrt 25 }}{{\sqrt {4} }}\).

LT6

Trả lời câu hỏi Luyện tập 6 trang 55 SGK Toán 9 Cùng khám phá

a) \(\sqrt {\frac{9}{{25}}:\frac{{64}}{{121}}} \) ;

b) \(\sqrt {\frac{{81}}{{10}}}:\sqrt {4\frac{9}{{10}}} \) .

Phương pháp giải:

Dựa vào công thức “\(\sqrt {\frac{a}{b}}  = \frac{{\sqrt a }}{{\sqrt b }}\)” để giải bài toán.

Lời giải chi tiết:

a) \(\sqrt {\frac{9}{{25}}:\frac{{64}}{{121}}} \)\( = \sqrt {\frac{9}{{25}}} :\sqrt {\frac{{64}}{{121}}} \)\( = \frac{3}{5}:\frac{8}{{11}}\)\( = \frac{3}{5}.\frac{{11}}{8}\)\( = \frac{{33}}{{40}}\).

b) \(\sqrt {\frac{{81}}{{10}}} :\sqrt {4\frac{9}{{10}}} \)\( = \sqrt {\frac{{81}}{{10}}} :\sqrt {\frac{{49}}{{10}}} \)\( = \sqrt {\frac{{81}}{{10}}:\frac{{49}}{{10}}} \)\( = \sqrt {\frac{{81}}{{10}}.\frac{{10}}{{49}}} \)\( = \sqrt {\frac{{81}}{{49}}} \)\( = \frac{9}{7}\).

VD3

Trả lời câu hỏi Vận dụng 3 trang 55 SGK Toán 9 Cùng khám phá

Trả lời câu hỏi nêu trong phần Khởi động bằng cách tính tỉ số của \({v_2}\) và \({v_1}\).

“Tốc độ \(v\left( {m/s} \right)\) của một vật thể sau khi rơi được \(h\left( m \right)\) từ một độ cao được tính bởi công thức \(v = \sqrt {19,6h} \). Gọi \({v_1}\) là tốc độ của vật sau khi rơi được 25 mét và \({v_2}\) là tốc độ của vật sau khi rơi được 100 mét. Hỏi \({v_2}\) gấp bao nhiêu lần \({v_1}\)?”

Phương pháp giải:

+ Áp dụng công thức tính \({v_1};{v_2}\).

+ Tính tỉ số của \({v_2}\) và \({v_1}\).

Lời giải chi tiết:

Ta có: \({v_1} = \sqrt {19,6.25} ;{v_2} = \sqrt {19,6.100} \).

Tỉ số của \({v_2}\) và \({v_1}\) là:

\(\frac{{{v_2}}}{{{v_1}}} = \frac{{\sqrt {19,6.100} }}{{\sqrt {19,6.25} }} = \sqrt {\frac{{19,6.100}}{{19,6.25}}}  = \sqrt {\frac{{100}}{{25}}}  = \sqrt 4  = 2\).

Vậy \({v_2}\) gấp 2 lần \({v_1}\).


Cùng chủ đề:

Giải mục 4 trang 74, 75 SGK Toán 9 tập 2 - Cùng khám phá
Giải mục 4 trang 79, 80, 81 SGK Toán 9 tập 1 - Cùng khám phá
Giải mục 4 trang 82 SGK Toán 9 tập 2 - Cùng khám phá
Giải mục 4 trang 118 SGK Toán 9 tập 2 - Cùng khám phá
Giải mục 5 trang 17 SGK Toán 9 tập 1 - Cùng khám phá
Giải mục 5 trang 55 SGK Toán 9 tập 1 - Cùng khám phá
Giải mục 5 trang 62, 63, 64 SGK Toán 9 tập 1 - Cùng khám phá
Giải mục 6 trang 56 SGK Toán 9 tập 1 - Cùng khám phá
Giải toán 9 bài 1 trang 2, 3, 4 Cùng khám phá
Giải toán 9 bài 1 trang 2, 3, 4 Cùng khám phá
Giải toán 9 bài 1 trang 29, 30, 31 Cùng khám phá