1. Bất đẳng thức Khi so sánh hai số thực a, b bất kì, luôn xảy ra một trong ba trường hợp sau:
Trong một thang máy có viết thông báo: “Tải trọng không vượt quá 1000kg”. a) Những tải trọng nào sau đây có thể được chấp nhận bởi thang máy này? Giải thích vì sao. 900kg; 1000kg; 825kg; 1023kg. b) Gọi \(a\) là trọng tải mà thang máy cho phép. Hỏi \(a\) có thể nhận những giá trị nào?
a) Tết trồng cây năm ngoái, chi đoàn Hải Bình trồng được a cây, chi đoàn Tân Phú trồng được b cây, ít hơn so với chi đoàn Hải Bình. Viết bất đẳng thức so sánh a và b. b) Số cây do chi đoàn Hải Bình trồng được năm ngoái được biểu diễn bằng một điểm màu xanh trên trục số ở Hình 2.1 (mỗi khoảng cách ứng với 1 đơn vị). Hãy vẽ lại Hình 2.1 và biểu diễn điểm b trên trục số bằng một điểm màu xanh khác, biết rằng năm ngoái chi đoàn Tân Phú trồng được ít hơn 4 cây so với chi đoàn Hải Bình. c) Năm na
Chọn dấu thích hợp (>,<) cho từng ô “…” . Trong mỗi trường hợp, có nhận xét gì về chiều của bất đẳng thức thu được với chiều của bất đẳng thức ở dòng ngay phía trên? a) \(2 < 5\) \(2.4\) … \(5.4\) \(2.7\) … \(5.7\) b) \( - 3 < 1\) \( - 3.8\) … \(1.8\) \( - 3.2\) … \(1.2\) c) \( - 1 > - 4\) \( - 1.12\) … \( - 4.12\) \( - 1.5\) … \( - 4.5\)
a) Trong một mùa thi đấu giải vô địch bóng đá quốc gia, đội A ghi được ít bàn thắng hơn đội B, đội B lại ghi được ít bàn thắng hơn đội C. Gọi \(a,b,c\) lần lượt là số bàn thắng của đội A, B, C. Viết các bất đẳng thức biểu thị quan hệ thứ tự giữa \(a\) và \(b\), giữa \(b\) và \(c\). b) Hình 2.2 cho biết biểu diễn của \(a\) trên trục số. Hãy biểu diễn \(b\) và \(c\) trên trục số. So sánh số bàn thắng của các đội A và C.
Mỗi khẳng định sau đúng hay sai? Vì sao? a) \( - 4 + 7 > 5\); b) \( - 12 \le - 3.4\); c) \(135 + \left( { - 87} \right) < 150 + \left( { - 87} \right)\).
Chép lại bảng bên và điền vào những ô có dấu “?” trong bảng đó để ô bên trái và bên phải của bảng biểu diễn cùng một thông tin.
Dưới đây là hình ảnh của hai biển báo tốc độ giao thông (đơn vị: km/h) dành cho ô tô, máy kéo, mô tô. Gọi \(v\) (km/h) là tốc độ lưu thông của các phương tiện đó khi đi trên đoạn đường có một trong hai biển báo trên. Hãy dùng các bất đẳng thức để mô tả điều kiện của \(v\) theo quy định để thể hiện trên mỗi biển báo.
Không thực hiện phép tính, hãy so sánh: a) \(2 + 28,5.6\) và \(3 + 28,5.6\); b) \(30\sqrt 2 - 2022\) và \(30\pi - 2022\); c) \(35 - 3\sqrt 3 \) và \(36 - 3\sqrt 2 \).
Cho \(a \le b\). Hãy so sánh: a) \(\sqrt 2 - 3a\) và \(\sqrt 2 - 3b\); b) \(20a - 5\) và \(20b - 5\).
So sánh \(x\) và \(y\) nếu: a) \(2x - 3 > 2y - 3\); b) \( - 3x + 4 \ge - 3y + 4\).
Cho \(x\) và \(y\) là hai số thực tùy ý, trong đó \(x < y\). Chứng minh rằng \(5 - 2x > 3 - 2y\).
Mỗi khẳng định sau đây đúng hay sai? Vì sao? a) \( - 3{x^2} \le 0\) với mọi số thực \(x\); b) Vì \(5 > - 3\) nên \(\frac{5}{a} > - \frac{3}{a}\) với mọi số thực \(a \ne 0\).
Hình chữ nhật \(ABCD\) có chiều dài gấp đôi chiều rộng. Biết rằng chiều rộng của hình chữ nhật lớn hơn 5cm. Bạn Mai kết luận là chu vi của hình chữ nhật lớn hơn 30cm. Phát biểu của bạn Mai có đúng không? Vì sao?