Giải bài tập 2. 7 trang 36 SGK Toán 9 tập 1 - Cùng khám phá — Không quảng cáo

Toán 9 cùng khám phá


Giải bài tập 2.7 trang 36 SGK Toán 9 tập 1 - Cùng khám phá

Cho \(x\) và \(y\) là hai số thực tùy ý, trong đó \(x < y\). Chứng minh rằng \(5 - 2x > 3 - 2y\).

Đề bài

Cho \(x\) và \(y\) là hai số thực tùy ý, trong đó \(x < y\). Chứng minh rằng \(5 - 2x > 3 - 2y\).

Phương pháp giải - Xem chi tiết

Dựa vào các mối liên hệ để giải bài toán.

Lời giải chi tiết

Vì \(x < y\) nên nhân hai vế của bất phương trình với \( - 2 < 0\) ta được: \( - 2x >  - 2y\) (1).

Cộng hai vế của bất phương trình (1) với số 5, ta được: \(5 - 2x > 5 - 2y\) (2).

Mặt khác, vì \(5 > 3\) nên \(5 - 2y > 3 - 2y\) (3).

Từ (2) và (3), sử dụng tính chất bắc cầu, suy ra \(5 - 2x > 3 - 2y\).


Cùng chủ đề:

Giải bài tập 2. 2 trang 36 SGK Toán 9 tập 1 - Cùng khám phá
Giải bài tập 2. 3 trang 36 SGK Toán 9 tập 1 - Cùng khám phá
Giải bài tập 2. 4 trang 36 SGK Toán 9 tập 1 - Cùng khám phá
Giải bài tập 2. 5 trang 36 SGK Toán 9 tập 1 - Cùng khám phá
Giải bài tập 2. 6 trang 36 SGK Toán 9 tập 1 - Cùng khám phá
Giải bài tập 2. 7 trang 36 SGK Toán 9 tập 1 - Cùng khám phá
Giải bài tập 2. 8 trang 36 SGK Toán 9 tập 1 - Cùng khám phá
Giải bài tập 2. 9 trang 36 SGK Toán 9 tập 1 - Cùng khám phá
Giải bài tập 2. 10 trang 44 SGK Toán 9 tập 1 - Cùng khám phá
Giải bài tập 2. 11 trang 44 SGK Toán 9 tập 1 - Cùng khám phá
Giải bài tập 2. 12 trang 44 SGK Toán 9 tập 1 - Cùng khám phá