Giải mục I trang 87, 88, 89 SGK Toán 10 tập 2 - Cánh diều — Không quảng cáo

Toán 10, giải toán lớp 10 cánh diều Bài 5. Phương trình đường tròn Toán 10 Cánh diều


Giải mục I trang 87, 88, 89 SGK Toán 10 tập 2 - Cánh diều

a) Tính khoảng cách từ gốc toạ độ C(0;0) đến điểm M(3 ; 4) trong mặt phẳng toạ độ Oxy. Trong mặt phẳng toạ độ Oxy, nêu mối liên hệ giữa x và y để: Viết phương trình đường tròn tâm I(6 ; - 4) đi qua điểm A(8 ; – 7). Lập phương trình đường tròn đi qua ba điểm A(1; 2), B(5; 2), C(1 ; – 3).

HĐ Khởi động

Lời giải chi tiết:

Người đó chuyển động theo quỹ đạo đường tròn nên để xác định phương trình quỹ đạo chuyển động của người đó ta cần phải lập phương trình đường tròn.

Hoạt động 1

a) Tính khoảng cách từ gốc toạ độ C(0;0) đến điểm M(3 ; 4) trong mặt phẳng toạ độ Oxy.

b) Cho hai điểm I(a; b) và M(x ; y) trong mặt phẳng toạ độ Oxy. Nêu công thức tính độ

dài đoạn thẳng IM.

Lời giải chi tiết:

a) Khoảng cách từ gốc tọa độ \(O\left( {0;0} \right)\) đến điểm \(M\left( {3;4} \right)\) trong mặt phẳng tọa độ Oxy là:

\(OM = \left| {\overrightarrow {OM} } \right| = \sqrt {{3^2} + {4^2}}  = 5\)

b) Với hai điểm I(a; b) và M(x ; y) trong mặt phẳng toạ độ Oxy, ta có:\(IM = \sqrt {{{\left( {x - a} \right)}^2} + {{\left( {y - b} \right)}^2}} \)

Hoạt động 2

Trong mặt phẳng toạ độ Oxy, nêu mối liên hệ giữa x và y để:

a) Điểm M(x ; y) nằm trên đường tròn tâm O(0 : 0) bán kính 5.

b) Điểm M(x ; y) nằm trên đường tròn (C) tâm I(a; b) bán kính R.

Lời giải chi tiết:

a) Mối liên hệ giữa x và y là: \({x^2} + {y^2} = 5\)

b) Mối liên hệ giữa x và y là: \({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} = {R^2}\)

Hoạt động 3

Viết phương trình đường tròn (C): \({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} = {R^2}\) về dạng \({x^2} + {y^2} - 2{\rm{a}}x - 2by + c = 0\)

Lời giải chi tiết:

Ta có:

\(\begin{array}{l}{\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} = {R^2}\\ \Leftrightarrow {x^2} - 2ax + {a^2} + {y^2} - 2by + {b^2} - {R^2} = 0\\ \Leftrightarrow {x^2} + {y^2} - 2ax - 2by + c = 0\left( {{a^2} + {b^2} - {R^2} = c} \right)\end{array}\)

Luyện tập – vận dụng 1

Viết phương trình đường tròn tâm I(6 ; - 4) đi qua điểm A(8 ; – 7).

Lời giải chi tiết:

Phương trình đường tròn tâm I  bán kính \(IA = \left| {\overrightarrow {IA} } \right| = \sqrt {{2^2} + {{\left( { - 3} \right)}^2}}  = \sqrt {13} \) là:

\({\left( {x - 6} \right)^2} + {\left( {y + 4} \right)^2} = 13\)

Luyện tập – vận dụng 2

Tìm k sao cho phương trình:\({x^2} + {y^2} + 2kx + 4y + 6k--1 = 0\) là phương trình đường tròn.

Lời giải chi tiết:

Để phương trình trên là phương trình đường tròn thì \({\left( { - k} \right)^2} + {\left( { - 2} \right)^2} > 6k - 1 \Leftrightarrow {k^2} + 4 - 6k + 1 > 0 \Leftrightarrow \left[ \begin{array}{l}k < 1\\k > 5\end{array} \right.\)

Luyện tập – vận dụng 3

Lập phương trình đường tròn đi qua ba điểm A(1; 2), B(5; 2), C(1 ; – 3).

Lời giải chi tiết:

Giả sử  tâm đường tròn là điểm \(I\left( {a;b} \right)\). Ta có: \(IA = IB = IC \Leftrightarrow I{A^2} = I{B^2} = I{C^2}\)

Vì \(I{A^2} = I{B^2},I{B^2} = I{C^2}\) nên: \(\left\{ \begin{array}{l}{\left( {1 - a} \right)^2} + {\left( {2 - b} \right)^2} = {\left( {5 - a} \right)^2} + {\left( {2 - b} \right)^2}\\{\left( {5 - a} \right)^2} + {\left( {2 - b} \right)^2} = {\left( {1 - a} \right)^2} + {\left( { - 3 - b} \right)^2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 3\\b = \frac{{ - 1}}{2}\end{array} \right.\)

Vậy \(I\left( {3; - \frac{1}{2}} \right)\) và \(R = IA = \sqrt {{{\left( { - 2} \right)}^2} + {{\left( {\frac{5}{2}} \right)}^2}}  = \frac{{\sqrt {41} }}{2}\)

Vậy phương trình đường tròn đi qua 3 điểm A,B, C là: \({\left( {x - 3} \right)^2} + {\left( {y + \frac{1}{2}} \right)^2} = \frac{{41}}{4}\)


Cùng chủ đề:

Giải mục I trang 72, 73 SGK Toán 10 tập 1 - Cánh diều
Giải mục I trang 73, 74 SGK Toán 10 tập 2 - Cánh diều
Giải mục I trang 79, 80 SGK Toán 10 tập 1 - Cánh diều
Giải mục I trang 81, 82 SGK Toán 10 tập 2 - Cánh diều
Giải mục I trang 83, 84, 85 SGK Toán 10 tập 1 - Cánh diều
Giải mục I trang 87, 88, 89 SGK Toán 10 tập 2 - Cánh diều
Giải mục I trang 88, 89 SGK Toán 10 tập 1 - Cánh diều
Giải mục I trang 93, 94 SGK Toán 10 tập 1 - Cánh diều
Giải mục I trang 93, 94, 95 SGK Toán 10 tập 2 - Cánh diều
Giải mục II trang 4, 5, 6 SGK Toán 10 tập 2 - Cánh diều
Giải mục II trang 6 SGK Toán 10 tập 1 - Cánh diều