Giải mục III trang 89, 90 SGK Toán 10 tập 1 - Cánh diều — Không quảng cáo

Toán 10, giải toán lớp 10 cánh diều Bài 5. Tích của vecto với một số Toán 10 Cánh diều


Giải mục III trang 89, 90 SGK Toán 10 tập 1 - Cánh diều

Cho tam giác ABC có G là trọng tâm. Chứng minh Cho ba điểm phân biệt A, B, C. Ở hình 61, tìm k trong mỗi trường hợp sau:

LT-VD 3

Cho tam giác ABC có G là trọng tâm. Chứng minh \(\overrightarrow {AB}  + \overrightarrow {AC}  = 3\overrightarrow {AG} .\)

Phương pháp giải:

G là trọng tâm tam giác ABC thì \(\overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC}  = 3\overrightarrow {MG} \) với điểm M bất kì.

Lời giải chi tiết:

Với điểm M bất kì ta có: \(\overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC}  = 3\overrightarrow {MG} \)

Chọn M trùng A, ta được: \(\overrightarrow {AA}  + \overrightarrow {AB}  + \overrightarrow {AC}  = 3\overrightarrow {AG}  \Leftrightarrow \overrightarrow {AB}  + \overrightarrow {AC}  = 3\overrightarrow {AG} .\)

Hoạt động 6

Cho ba điểm phân biệt A, B, C.

a) Nếu ba điểm A, B, C thẳng hàng thì hai vecto \(\overrightarrow {AB} ,\overrightarrow {AC} \) cùng phương hay không?

b) Ngược lại, nếu hai vecto \(\overrightarrow {AB} ,\overrightarrow {AC} \) cùng phương thì ba điểm A, B, C có thẳng hàng hay không?

Phương pháp giải:

Hai vecto được gọi là cùng phương nếu giá của chúng song song hoặc trùng nhau.

Lời giải chi tiết:

a) Nếu A, B, C thẳng hàng thì đường thẳng AB trùng đường thẳng AC, do đó hai vecto \(\overrightarrow {AB} ,\overrightarrow {AC} \) cùng phương.

b) Nếu hai vecto \(\overrightarrow {AB} ,\overrightarrow {AC} \) cùng phương thì đường thẳng AB trùng đường thẳng AC, do đó ba điểm A, B, C có thẳng hàng.

LT-VD 4

Ở hình 61, tìm k trong mỗi trường hợp sau:

a) \(\overrightarrow {AC}  = k.\overrightarrow {AD} \)

b) \(\overrightarrow {BD}  = k.\overrightarrow {DC} \)

Phương pháp giải:

Từ hình vẽ suy ra hướng và tỉ số độ dài của hai vecto.

Lời giải chi tiết:

a) Ta có: \(\overrightarrow {AC} ,\overrightarrow {AD} \)là hai vecto cùng hướng và \(\left| {\overrightarrow {AC} } \right| = \frac{3}{4}\left| {\overrightarrow {AD} } \right|\)

Suy ra \(\overrightarrow {AC}  = \frac{3}{4}\overrightarrow {AD} .\) Vậy \(k = \frac{3}{4}.\)

b) Ta có: \(\overrightarrow {BD} ,\overrightarrow {DC} \)là hai vecto ngược hướng và \(\left| {\overrightarrow {BD} } \right| = 3\left| {\overrightarrow {DC} } \right|\)

Suy ra \(\overrightarrow {BD}  =  - 3\overrightarrow {DC} .\) Vậy \(k =  - 3.\)


Cùng chủ đề:

Giải mục III trang 69, 70 SGK Toán 10 tập 1 - Cánh diều
Giải mục III trang 70 SGK Toán 10 tập 2 - Cánh diều
Giải mục III trang 75, 76 SGK Toán 10 tập 1 - Cánh diều
Giải mục III trang 80, 81 SGK Toán 10 tập 1 - Cánh diều
Giải mục III trang 85 SGK Toán 10 tập 2 - Cánh diều
Giải mục III trang 89, 90 SGK Toán 10 tập 1 - Cánh diều
Giải mục III trang 96, 97 SGK Toán 10 tập 1 - Cánh diều
Giải mục III trang 99, 100 SGK Toán 10 tập 2 - Cánh diều
Giải mục IV trang 7, 8 SGK Toán 10 tập 1 - Cánh diều
Giải mục IV trang 8, 9 SGK Toán 10 tập 2 - Cánh diều
Giải mục IV trang 15 SGK Toán 10 tập 1 - Cánh diều