Lý thuyết Bất đẳng thức Toán 9 Chân trời sáng tạo — Không quảng cáo

Toán 9 chân trời sáng tạo


Lý thuyết Bất đẳng thức Toán 9 Chân trời sáng tạo

1. Bất đẳng thức Nhắc lại thứ tự trên tập số thực

1. Bất đẳng thức

Nhắc lại thứ tự trên tập số thực

Trên tập số thực, khi so sánh hai số a và b, xảy ra một trong ba trường hợp sau:

- Số a lớn hơn số b, kí hiệu \(a > b\).

- Số a nhỏ hơn số b, kí hiệu \(a < b\).

- Số a bằng số b, kí hiệu \(a = b\).

Khi biểu diễn số thực trên trục số, điểm biểu diễn số bé hơn nằm trước điểm biểu diễn số lớn hơn.

Nếu \(a > b\) hoặc \(a = b\), ta viết \(a \ge b\) (ta nói a lớn hơn hoặc bằng b hay a không nhỏ hơn b).

Nếu \(a < b\) hoặc \(a = b\), ta viết \(a \le b\) (ta nói a nhỏ hơn hoặc bằng b hay a không lớn hơn b).

Khái niệm bất đẳng thức

Hệ thức dạng \(a > b\) (hay \(a < b\), \(a \ge b\), \(a \le b\)) là bất đẳng thức và a được gọi là vế trái, b được gọi là vế phải của bất đẳng thức.

2. Tính chất của bất đẳng thức

Tính chất bắc cầu

Cho ba số a, b, c.

Nếu \(a < b\) và \(b < c\) thì \(a < c\).

Nếu \(a > b\) và \(b > c\) thì \(a > c\).

Nếu \(a \le b\) và \(b \le c\) thì \(a \le c\).

Nếu \(a \ge b\) và \(b \ge c\) thì \(a \ge c\).

Ví dụ: Vì \(\frac{{2024}}{{2023}} = 1 + \frac{1}{{2023}} > 1\) và \(\frac{{2021}}{{2022}} = 1 - \frac{1}{{2022}} < 1\) nên \(\frac{{2024}}{{2023}} > \frac{{2021}}{{2022}}\).

Tính chất liên hệ giữa thứ tự và phép cộng

Khi cộng cùng một số vào hai vế của một bất đẳng thức ta được bất đẳng thức mới cùng chiều với bất đẳng thức đã cho.

Cho ba số a, b, c.

Nếu \(a < b\) thì \(a + c < b + c\).

Nếu \(a > b\) thì \(a + c > b + c\).

Nếu \(a \le b\) thì \(a + c \le b + c\).

Nếu \(a \ge b\) thì \(a + c \ge b + c\).

Ví dụ: Vì \(2023 < 2024\) nên \(2023 + \left( { - 19} \right) < 2024 + \left( { - 19} \right)\)

Tính chất liên hệ giữa thứ tự và phép nhân

- Khi nhân cả hai vế của một bất đẳng thức với cùng một số dương ta được bất đẳng thức mới cùng chiều với bất đẳng thức đã cho.

Với ba số a, b, c và c > 0, ta có:

Nếu \(a < b\) thì \(ac < bc\).

Nếu \(a > b\) thì \(ac > bc\).

Nếu \(a \le b\) thì \(ac \le bc\).

Nếu \(a \ge b\) thì \(ac \ge bc\).

- Khi nhân cả hai vế của một bất đẳng thức với cùng một số âm ta được bất đẳng thức mới ngược chiều với bất đẳng thức đã cho.

Với ba số a, b, c và c < 0, ta có:

Nếu \(a < b\) thì \(ac > bc\).

Nếu \(a > b\) thì \(ac < bc\).

Nếu \(a \le b\) thì \(ac \ge bc\).

Nếu \(a \ge b\) thì \(ac \le bc\).

Ví dụ:

Vì \( - 7 <  - 5\) và \(3 > 0\) nên \(3.\left( { - 7} \right) < 3.\left( { - 5} \right)\).

Vì \( - 7 <  - 5\) và \( - 3 < 0\) nên \(\left( { - 3} \right).\left( { - 7} \right) > \left( { - 3} \right).\left( { - 5} \right)\).


Cùng chủ đề:

Giải toán 9 bài tập cuối chương 9 trang 81, 82 Chân trời sáng tạo
Giải toán 9 bài tập cuối chương 10 trang 98, 99 Chân trời sáng tạo
Giải toán 9 bài trang 100, 101, 102 Chân trời sáng tạo
Giải toán 9 bài trang 108, 109, 110 Chân trời sáng tạo
Lý thuyết Bất phương trình bậc nhất một ẩn Toán 9 Chân trời sáng tạo
Lý thuyết Bất đẳng thức Toán 9 Chân trời sáng tạo
Lý thuyết Bảng tần số tương đối và biểu đồ tần số tương đối Toán 9 Chân trời sáng tạo
Lý thuyết Bảng tần số và biểu đồ tần số Toán 9 Chân trời sáng tạo
Lý thuyết Biến đổi đơn giản biểu thức chứa căn thức bậc hai Toán 9 Chân trời sáng tạo
Lý thuyết Biểu diễn số liệu ghép nhóm Toán 9 Chân trời sáng tạo
Lý thuyết Căn bậc ba Toán 9 Chân trời sáng tạo