Lý thuyết Cộng, trừ, nhân, chia số hữu tỉ Toán 7 Cánh diều — Không quảng cáo

Toán 7, giải toán lớp 7 cánh diều Bài 2. Cộng, trừ, nhân, chia số hữu tỉ trang 12 SGK Toá


Lý thuyết Cộng, trừ, nhân, chia số hữu tỉ Toán 7 Cánh diều

I. Cộng và trừ hai số hữu tỉ. Quy tắc chuyển vế

I. Cộng và trừ hai số hữu tỉ. Quy tắc chuyển vế

1) Cộng, trừ hai số hữu tỉ

+ Bước 1: Viết các số hữu tỉ dưới dạng phân số

+ Bước 2: Cộng, trừ phân số

Chú ý:  Nếu 2 số hữu tỉ đều viết được dưới dạng số thập phân thì ta áp dụng quy tắc cộng và trừ 2 đối với số thập phân.

2) Tính chất của phép cộng số hữu tỉ:

+ Giao hoán: a + b = b + a

+ Kết hợp: a + (b + c) = (a + b) + c

+ Cộng với số 0 : a + 0 = a

+ 2 số đối nhau luôn có tổng là 0: a + (-a) = 0

3) Quy tắc dấu ngoặc:

Trong tập các số hữu tỉ Q, ta cũng có quy tắc dấu ngoặc tương tự như trong tập các số nguyên Z:

Khi bỏ ngoặc,

+ Nếu trước dấu ngoặc có dấu “+” thì ta bỏ ngoặc và giữ nguyên dấu của tất cả các số hạng trong ngoặc.

+ Nếu trước dấu ngoặc có dấu “-” thì ta bỏ ngoặc và đổi dấu tất cả các số hạng trong ngoặc.

* Đối với 1 tổng, ta có thể đổi chỗ tùy ý các số hạng, đặt dấu ngoặc để nhóm các số hạng 1 cách tùy ý.

Ví dụ:

\(\begin{array}{l}\frac{8}{5} - (\frac{5}{4} + \frac{3}{5} - \frac{1}{4})\\ = \frac{8}{5} - \frac{5}{4} - \frac{3}{5} + \frac{1}{4}\\ = \left( {\frac{8}{5} - \frac{3}{5}} \right) + \left( {\frac{1}{4} - \frac{5}{4}} \right)\\ = \frac{5}{5} + \frac{{ - 4}}{4}\\ = 1 + ( - 1)\\ = 0\end{array}\)

II. Nhân và chia hai số hữu tỉ

1) Quy tắc nhân, chia  hai số hữu tỉ

+ Bước 1: Viết hai số hữu tỉ dưới dạng phân số

+ Bước 2: Nhân, chia hai phân số

Chú ý:  Nếu 2 số hữu tỉ đều viết được dưới dạng số thập phân thì ta áp dụng quy tắc nhân và chia đối với số thập phân.

Mỗi số hữu tỉ a khác 0 đều có số nghịch đảo sao cho tích của chúng bằng 1

- Số nghịch đảo của a là \(\frac{1}{a}(a \ne 0)\)

- Nếu a, b là 2 số hữu tỉ, b \( \ne \)0 thì a : b = a . \(\frac{1}{b}\)

2) Tính chất của phép nhân số hữu tỉ:

+ Giao hoán: a . b = b . a

+ Kết hợp: a . (b . c) = (a . b) . c

+ Nhân với số 0 : a . 0 = 0

+ Nhân với số 1 : a . 1 = a

+ Tính chất phân phối của phép nhân đối với phép cộng: a . ( b + c) = a.b + a.c

Ví dụ:

\(\begin{array}{l}\frac{4}{7}.\frac{3}{5} - \frac{2}{5}:\frac{7}{{ - 4}}\\ = \frac{4}{7}.\frac{3}{5} - \frac{2}{5}.\frac{{ - 4}}{7}\\ = \frac{4}{7}.\frac{3}{5} + \frac{4}{7}.\frac{2}{5}\\ = \frac{4}{7}.\left( {\frac{3}{5} + \frac{2}{5}} \right)\\ = \frac{4}{7}.1\\ = \frac{4}{7}\end{array}\)


Cùng chủ đề:

Giải toán 7 bài tập cuối chương I trang 30, 31 cánh diều
Giải toán 7 bài tập cuối chương II trang 69, 70 cánh diều
Giải toán 7 bài tập cuối chương III trang 87 cánh diều
Giải toán 7 bài tập cuối chương IV trang 108 cánh diều
Lý thuyết Biểu diễn thập phân của số hữu tỉ Toán 7 Cánh diều
Lý thuyết Cộng, trừ, nhân, chia số hữu tỉ Toán 7 Cánh diều
Lý thuyết Dãy tỉ số bằng nhau Toán 7 Cánh diều
Lý thuyết Giá trị tuyệt đối của một số thực Toán 7 Cánh diều
Lý thuyết Góc ở vị trí đặc biệt SGK Toán 7 Cánh diều
Lý thuyết Hai tam giác bằng nhau SGK Toán 7 - Cánh diều
Lý thuyết Hai đường thẳng song song SGK Toán 7 Cánh diều