Lý thuyết Đại lượng tỉ lệ thuận Toán 7 Cánh diều
I. Khái niệm
I. Khái niệm
Nếu đại lượng y liên hệ với đại lượng x theo công thức y = k.x (k là hằng số khác 0) thì y tỉ lệ thuận với x theo hệ số tỉ lệ k.
Chú ý: Nếu đại lượng y tỉ lệ thuận với đại lượng x theo hệ số tỉ lệ k thì đại lượng x tỉ lệ thuận với đại lượng y theo hệ số tỉ lệ \(\frac{1}{k}\). Ta nói x và y là hai đại lượng tỉ lệ thuận với nhau.
II. Tính chất
Nếu 2 đại lượng tỉ lệ thuận với nhau thì:
+ Tỉ số hai đại lượng tương ứng của chúng luôn không đổi.
+ Tỉ số hai giá trị bất kì của đại lượng này bằng tỉ số hai giá trị tương ứng của đại lượng kia.
Cụ thể: Nếu y tỉ lệ thuận với x theo hệ số tỉ lệ k. Với mỗi giá trị x 1 , x 2 , x 3 ,… khác 0 của x, lần lượt tương ứng với giá trị y 1 , y 2 , y 3 ,… của y thì:
- \(\frac{{{y_1}}}{{{x_1}}} = \frac{{{y_2}}}{{{x_2}}} = \frac{{{y_3}}}{{{x_3}}} = .... = k\)
- \(\frac{{{x_1}}}{{{x_2}}} = \frac{{{y_1}}}{{{y_2}}};\frac{{{x_1}}}{{{x_3}}} = \frac{{{y_1}}}{{{y_3}}};...\)
Ví dụ:
Trung bình cứ 5 l nước biển chứa 175 g muối. Hỏi trung bình 12 l nước biển chứa bao nhiêu gam muối?
Lời giải
Gọi khối lượng muối có trong 12 l nước biển là x (g) (x > 0)
Vì lượng nước biển và lượng muối nó chứa là hai đại lượng tỉ lệ thuận nên theo tính chất của hai đại lượng tỉ lệ thuận, ta có: \(\frac{{175}}{5} = \frac{x}{{12}} \Rightarrow x = \frac{{175.12}}{5} = 420\)
Vậy khối lượng muối có trong 12 l nước biển là 420 g.