Lý thuyết diện tích hình tròn, hình quạt tròn — Không quảng cáo

Giải toán 9, giải bài tập toán lớp 9 đầy đủ đại số và hình học Bài 10. Diện tích hình tròn, hình quạt tròn


Lý thuyết diện tích hình tròn, hình quạt tròn

1. Công thức tính diện tích hình tròn.

1. Các kiến thức cần nhớ

Công thức tính diện tích hình tròn

Diện tích $S$ của một hình tròn bán kính $R$ được tính theo công thức \(S = \pi {R^2}\)

Công thức tính diện tích hình quạt tròn

Diện tích hình quạt tròn bán kính $R$ , cung \(n^\circ \) được tính theo công thức

\(S = \dfrac{{\pi {R^2}n}}{{360}}\,\,hay\,\,\,S = \dfrac{{l.{\rm{R}}}}{2}\) ( với $l$ là độ dài cung \(n^\circ \) của hình quạt tròn).

2. Các dạng toán thường gặp

Dạng 1: Tính diện tích hình tròn, diện tích hình quạt tròn và các đại lượng liên quan

Phương pháp:

Áp dụng các công thức tính diện tích hình tròn \(S = \pi {R^2}\) và diện tích hình quạt tròn bán kính $R,$ cung \(n^\circ \)

\(S = \dfrac{{\pi {R^2}n}}{{360}}\,\,hay\,\,\,S = \dfrac{{l.{\rm{R}}}}{2}\) (với $l$ là độ dài cung \(n^\circ \)của hình quạt tròn)

Dạng 2 : Bài toán tổng hợp

Phương pháp :

Sử dụng linh hoạt các kiến thức đã học để tính góc ở tâm, bán kinh đường tròn. Từ đó tính được diện tích hình tròn và diện tích hình quạt tròn.


Cùng chủ đề:

Lý thuyết Ôn tập chương 4. Hình trụ - Hình nón - Hình cầu
Lý thuyết Phương trình bậc hai một ẩn
Lý thuyết Phương trình bậc nhất hai ẩn
Lý thuyết Phương trình quy về phương trình bậc hai
Lý thuyết cung chứa góc
Lý thuyết diện tích hình tròn, hình quạt tròn
Lý thuyết giải bài toán bằng cách lập phương trình - Toán 9 - Tập 2
Lý thuyết góc có đỉnh ở bên trong đường tròn, góc có đỉnh ở bên ngoài đường tròn
Lý thuyết góc nội tiếp
Lý thuyết góc ở tâm. Số đo cung
Lý thuyết góc tạo bởi tia tiếp tuyến và dây cung