Lý thuyết Định lí Pythagore SGK Toán 8 - Cánh diều
Định lí Pythagore
1. Định lí Pythagore
Trong một tam giác vuông, bình phương độ dài của cạnh huyền bằng tổng các bình phương độ dài của hai cạnh góc vuông.
ΔABC,ˆA=90o⇒BC2=AB2+AC2
2. Định lí Pythagore đảo
Nếu một tam giác có bình phương độ dài của một cạnh bằng tổng các bình phương độ dài của hai cạnh kia thì tam giác đó là tam giác vuông.
ΔABC,BC2=AB2+AC2⇒ˆA=90o
Ví dụ:
Tam giác ABC có AB = 3cm, BC = 5cm, AC = 4cm thì tam giác ABC vuông tại A do 32+42=52, suy ra BC2=AB2+AC2.
Cùng chủ đề:
Lý thuyết Xác suất thực nghiệm của một biến cố trong một số trò chơi đơn giản SGK Toán 8 - Cánh diều
Lý thuyết Định lí Pythagore SGK Toán 8 - Cánh diều