Lý thuyết Hệ số góc của đường thẳng y = ax + b (a ≠ 0) — Không quảng cáo

Giải toán 9, giải bài tập toán lớp 9 đầy đủ đại số và hình học Bài 5. Hệ số góc của đường thẳng y = ax + b (a ≠ 0)


Lý thuyết Hệ số góc của đường thẳng y = ax + b (a ≠ 0)

Gọi A là giao điểm của đường thẳng

1. Góc tạo bởi đường thẳng \(y = ax + b (a ≠ 0)\) và trục \(Ox.\)

Gọi \(A\) là giao điểm của đường thẳng \(d:y = ax + b\) với trục \(Ox\) và \(T\) là một điểm thuộc đường thẳng, nằm phía trên trục \(Ox.\) Khi đó góc \(\alpha=\widehat {TAx}\) được gọi là góc tạo bởi đường thẳng \(d: y = ax + b\) và trục \(Ox.\)

2. Hệ số góc của đường thẳng \(y = ax + b (a ≠ 0)\)

+) Khi \(a > 0,\) góc tạo bởi đường thẳng \(y = ax + b\) và trục \(Ox\) là góc nhọn và nếu \(a\) càng lớn thì góc đó càng lớn nhưng vẫn nhỏ hơn \(90^0.\)

+) Khi \(a < 0,\) góc tạo bởi đường thẳng \(y = ax + b\) và trục \(Ox\) là góc tù và nếu \(|a|\) càng bé thì góc đó càng lớn nhưng vẫn nhỏ hơn \(180^0.\)

Như vậy, góc tạo bởi đường thẳng \(d: y = ax + b\) và trục \(Ox\) phụ thuộc vào \(a.\)

Người ta gọi \(a\) là hệ số góc của đường thẳng \(y = ax + b.\)

Lưu ý:

+) Khi \(a > 0,\) ta có \(\tan \alpha= a.\)

+) Khi \(a < 0,\) ta có \(\tan (180^0-\alpha) = -a.\)

Từ đó tìm được số đo của góc \(180^0-\alpha\) rồi suy ra số đo của góc \(\alpha.\)

+) Các đường thẳng có cùng hệ số \(a\) (\(a\) là hệ số của \(x\)) thì tạo với trục \(Ox\) các góc bằng nhau.

3. Các dạng toán cơ bản

Dạng 1: Xác định hệ số góc của đường thẳng

Phương pháp:

Đường thẳng \((d)\) có phương trình \(y = ax + b\,\left( {a \ne 0} \right)\) có \(a\) là hệ số góc.

Ví dụ: Hệ số góc của đường thẳng \(y=-2x+1\) là \(a=-2\)

Dạng 2: Tính góc tạo bởi tia \(Ox\) và đường thẳng \((d).\)

Phương pháp:

Gọi \(\alpha \) là góc tạo bởi tia \(Ox\) và \(d.\) Ta có: \(a = \tan \alpha \)

Ví dụ: Góc tạo bởi tia \(Ox\) và đường thẳng \((d):y=\sqrt 3 x+1\) là \(\alpha \)

Khi đó: \(\tan \alpha=\sqrt 3\) nên \(\alpha =60^0\)

Dạng 3. Viết phương trình đường thẳng hoặc tìm tham số m khi biết hệ số góc

Phương pháp:

Gọi phương trình  đường thẳng cần tìm là $y = ax + b\,\,\left( {a \ne 0} \right)$.

Dựa vào lý thuyết về hệ số góc để tìm $a$. Từ đó, sử dụng dữ kiện còn lại của đề bài để tìm $b$.

4. Bài tập về hệ số góc của đường thẳng y = ax + b (a ≠ 0)

Bài 1. Cho đường thẳng $d$:$y = ax + b\,\,\left( {a \ne 0} \right)$. Hệ số góc của đường thẳng $d$ là

A. $ - a$

B. $a$

C. $\dfrac{1}{a}$

D. $b$

Lời giải:

Đường thẳng $d$ có phương trình \(y = ax + b\,\left( {a \ne 0} \right)\)có $a$ là hệ số góc.

Chọn đáp án B.

Bài 2. Cho đường thẳng $d$:$y = ax + b\,\,\left( {a > 0} \right)$.  Gọi \(\alpha \) là góc tạo bởi tia \(Ox\) và \(d.\) Khẳng định nào dưới đây là đúng ?

A. $a =  - \tan \alpha $

B. $a = \tan \left( {180 - \alpha } \right)$

C. $a = \tan \alpha $

D. $a =  - \tan \left( {180^\circ  - \alpha } \right)$

Lời giải: Cho đường thẳng \(d\) có phương trình \(y = ax + b\,\left( {a \ne 0} \right)\).

Gọi \(\alpha \) là góc tạo bởi tia \(Ox\) và \(d.\) Ta có: $a = \tan \alpha $

Chọn đáp án C.

Bài 3. Cho đường thẳng $d$:$y = 2x + 1$. Hệ số góc của đường thẳng $d$ là

A. $ - 2$

B. $\dfrac{1}{2}$

C. $1$

D. $2$

Lời giải: Đường thẳng $d$:$y = 2x + 1$ có hệ số góc là $a = 2$.

Chọn đáp án D.

Bài 4. Cho đường thẳng $d:$ $y = \left( {m + 2} \right)x - 5$ đi qua điểm $A\left( { - 1;2} \right)$. Hệ số góc của đường thẳng $d$ là

A. $1$

B. $11$

C. $ -7$

D. $7$

Lời giải: Thay tọa độ điểm $A$ vào phương trình đường thẳng $d$ ta được $\left( {m + 2} \right).\left( { - 1} \right) - 5 = 2 \Leftrightarrow -m-2=7\Leftrightarrow m = -9$

Suy ra $d:y = -7x - 5$

Hệ số góc của đường thẳng $d$ là $k = -7$.

Chọn đáp án C.

Bài 5. Tìm hệ số góc của đường thẳng $d$ biết $d$ đi qua gốc tọa độ $O$ và điểm $M\left( {1;3} \right)$

A. $ - 2$

B. $3$

C. $1$

D. $2$

Lời giải:

Gọi phương trình đường thẳng $d$cần tìm là $y = ax + b\,$ \( \left( {a \ne 0} \right)\)

Vì $d$ đi qua gốc tọa độ nên $b = 0$$ \Rightarrow y = ax$

Thay tọa độ điểm $M$ vào phương trình $y = ax$ ta được $3 = 1.a \Rightarrow a = 3$ (TM)

Nên phương trình đường thẳng $d:y = 3x$

Hệ số góc của $d$ là $k = 3.$

Chọn đáp án B.

Bài 6. Cho đường thẳng $d$: $y = \left( {m + 2} \right)x - 5$ có hệ số góc là $k =  - 4$. Tìm $m$

A. $m =  - 4$

B. $m =  - 6$

C. $m =  - 5$

D. $m =  - 3$

Lời giải: Hệ số góc của đường thẳng $d$ là $k = m + 2$  $(m \ne -2)$

Từ giả thiết suy ra $m + 2 =  - 4 \Leftrightarrow m =  - 6(TM)$.

Chọn đáp án B.

Bài 7. Tính góc tạo bởi tia $Ox$ và đường thẳng $y = \sqrt 3 x - 6$

A. $45^\circ $

B. $30^\circ $

C. $60^\circ $

D. $90^\circ $

Lời giải: Gọi \(\alpha \) là góc tạo bởi tia \(Ox\) và \(d.\) Ta có $\tan \alpha  = \sqrt 3  \Rightarrow \alpha  = 60^\circ $

Chọn đáp án C.

Bài 8. Viết phương trình đường thẳng $d$ biết $d$ di qua $B( - 1;1)$ và tạo với trục $Ox$  một góc bằng \(45^\circ \).

A. $y = x - 2$

B. $y = x + 2$

C. $y =  - x - 2$

D. $y = x + 1$

Lời giải: Gọi phương trình đường thẳng $d:y = ax + b$ $(a\ne 0)$

Vì góc tạo bởi đường thẳng $d$ và trục $Ox$ là $45^\circ $ nên $a = \tan 45^\circ  = 1$

$ \Rightarrow y = x + b$

Thay tọa độ điểm $B$ vào phương trình đường thẳng $d$ ta có $ - 1 + b = 1 \Rightarrow b = 2$

Nên $d:y = x + 2$.

Chọn đáp án B.


Cùng chủ đề:

Lý thuyết Giải bài toán bằng cách lập hệ phương trình
Lý thuyết Giải hệ phương trình bằng phương pháp cộng đại số
Lý thuyết Giải hệ phương trình bằng phương pháp thế
Lý thuyết Hàm số y = ax^2 (a ≠ 0)
Lý thuyết Hệ hai phương trình bậc nhất hai ẩn
Lý thuyết Hệ số góc của đường thẳng y = ax + b (a ≠ 0)
Lý thuyết Hệ thức Vi - Ét và ứng dụng
Lý thuyết Ôn tập chương 1. Căn bậc hai. Căn bậc ba
Lý thuyết Ôn tập chương 1. Hệ thức lượng trong tam giác vuông
Lý thuyết Ôn tập chương 2. Hàm số bậc nhất
Lý thuyết Ôn tập chương 2. Đường tròn