Lý thuyết Ôn tập chương 1. Căn bậc hai. Căn bậc ba — Không quảng cáo

Giải toán 9, giải bài tập toán lớp 9 đầy đủ đại số và hình học Ôn tập chương I – Căn bậc hai. Căn bậc ba


Lý thuyết Ôn tập chương 1. Căn bậc hai. Căn bậc ba

Lý thuyết Ôn tập chương 1. Căn bậc hai. Căn bậc ba

1. Căn bậc hai số học

+) Căn bậc hai của một số không âm là số \(x\) sao cho \({x^2} = a.\)

+) Số dương \(a\) có đúng hai căn bậc hai là \(\sqrt a \) (và gọi là căn bậc hai số học của \(a\)) và \( - \sqrt a .\)

+) Số \(0\) có đúng một căn bậc hai là chính số \(0\) và nó cũng là căn bậc hai số học của \(0.\)

+) Với hai số không âm \(a,b,\) ta có \(a < b \Leftrightarrow \sqrt a  < \sqrt b .\)

2. Căn thức bậc hai

+) Với \(A\) là một biểu thức đại số, ta gọi \(\sqrt A \) là căn thức bậc hai của \(A\).

+) \(\sqrt A \) xác định (hay có nghĩa )  khi \(A\) lấy giá trị không âm tức là $ A \ge 0.$

\(\sqrt {{A^2}}  = \left| A \right| = \left\{ \begin{array}{l}A\begin{array}{*{20}{c}}{}&{{\rm{khi }}A \ge 0}\end{array}\\ - A\begin{array}{*{20}{c}}{}&{{\rm{khi }}\, A < 0}\end{array}\end{array} \right..\)

3. Liên hệ giữa phép nhân, phép chia với phép khai phương

Khai phương một tích: \(\sqrt {A.B}  = \sqrt A .\sqrt B {\rm{   }}(A \ge 0,B \ge 0)\)

Nhân các căn bậc hai:   \(\sqrt A .\sqrt B  = \sqrt {A.B} {\rm{  }}(A \ge 0,B \ge 0)\)

Khai phương một thương:   \(\sqrt {\dfrac{A}{B}}  = \dfrac{{\sqrt A }}{{\sqrt B }}{\rm{  }}(A \ge 0,B > 0)\)

Chia căn bậc hai:   \(\dfrac{{\sqrt A }}{{\sqrt B }} = \sqrt {\dfrac{A}{B}} {\rm{   }}\left( {A \ge 0,B > 0} \right)\)

4. Biến đổi đơn giản biểu thức chứa căn bậc hai

Với \(A \ge 0\) và \(B \ge 0\) thì \(\sqrt {{A^2}B}  = A\sqrt B \)

Với \(A < 0\) và \(B \ge 0\) thì \(\sqrt {{A^2}B}  =  - A\sqrt B \)

Với \(A \ge 0\) và \(B \ge 0\) thì \(A\sqrt B  = \sqrt {{A^2}B} \)

Với \(A < 0\) và \(B \ge 0\) thì \(A\sqrt B  =  - \sqrt {{A^2}B} \)

Với \(A.B \ge 0\) và \(B \ne 0\) thì \(\sqrt {\dfrac{A}{B}}  = \dfrac{{\sqrt {AB} }}{{\left| B \right|}}\)

Với \(B > 0\) thì \(\dfrac{A}{{\sqrt B }} = \dfrac{{A\sqrt B }}{B}\)

Với \(A > 0\) và \(A \ne {B^2}\) thì \(\dfrac{C}{{\sqrt A  \pm B}} = \dfrac{{C(\sqrt A  \mp B)}}{{A - {B^2}}}\)


Cùng chủ đề:

Lý thuyết Giải hệ phương trình bằng phương pháp thế
Lý thuyết Hàm số y = ax^2 (a ≠ 0)
Lý thuyết Hệ hai phương trình bậc nhất hai ẩn
Lý thuyết Hệ số góc của đường thẳng y = ax + b (a ≠ 0)
Lý thuyết Hệ thức Vi - Ét và ứng dụng
Lý thuyết Ôn tập chương 1. Căn bậc hai. Căn bậc ba
Lý thuyết Ôn tập chương 1. Hệ thức lượng trong tam giác vuông
Lý thuyết Ôn tập chương 2. Hàm số bậc nhất
Lý thuyết Ôn tập chương 2. Đường tròn
Lý thuyết Ôn tập chương 3. Hệ hai phương trình bậc nhất hai ẩn
Lý thuyết Ôn tập chương 4. Góc với đường tròn